Page 31 - Read Online
P. 31

Page 10 of 11                                              Raza et al. Hepatoma Res 2019;5:42  I  http://dx.doi.org/10.20517/2394-5079.2019.014


                   pathogenesis. J Lipid Res 2016;57:1758-70.
               62.  Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun
                   2018;2:1425-39.
               63.  Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver
                   disease. Oxid Med Cell Longev 2018;2018:9547613.
               64.  Fu Y, Chung FL. Oxidative stress and hepatocarcinogenesis. Hepatoma Res 2018;4.
               65.  Nishida N, Yada N, Hagiwara S, Sakurai T, Kitano M, et al. Unique features associated with hepatic oxidative DNA damage and DNA
                   methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016;31:1646-53.
               66.  Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther
                   2019;203:107401.
               67.  Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, et al. ER stress cooperates with hypernutrition to trigger TNF-
                   dependent spontaneous HCC development. Cancer Cell 2014;26:331-43.
               68.  Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-related HCC. Adv Exp Med Biol 2018;1061:127-38.
               69.  Tian Y, Yang B, Qiu W, Hao Y, Zhang Z, et al. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic
                   reprogramming of oxLDL lipophagy. Nat Commun 2019;10:3391.
               70.  Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during
                   selective autophagy. Mol Cell 2013;51:618-31.
               71.  Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via
                   ROS-AMPK-ULK1 signaling. Autophagy 2015;11:1341-57.
               72.  Sun K, Xu L, Jing Y, Han Z, Chen X, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-
                   kappaB-IL1alpha/beta-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis. Cancer Lett
                   2017;388:198-207.
               73.  Kanno M, Kawaguchi K, Honda M, Horii R, Takatori H, et al. Serum aldo-keto reductase family 1 member B10 predicts advanced
                   liver fibrosis and fatal complications of nonalcoholic steatohepatitis. J Gastroenterol 2019;54:549-57.
               74.  Arendt BM, Teterina A, Pettinelli P, Comelli EM, Ma DWL, et al. Cancer-related gene expression is associated with disease severity
                   and modifiable lifestyle factors in non-alcoholic fatty liver disease. Nutrition 2019;62:100-7.
               75.  Torres-Mena JE, Salazar-Villegas KN, Sanchez-Rodriguez R, Lopez-Gabino B, Del Pozo-Yauner L, et al. Aldo-Keto reductases as
                   early biomarkers of hepatocellular carcinoma: a comparison between animal models and human HCC. Dig Dis Sci 2018;63:934-44.
               76.  Nikolaou N, Gathercole LL, Marchand L, Althari S, Dempster NJ, et al. AKR1D1 is a novel regulator of metabolic phenotype in
                   human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism 2019;99:67-80.
               77.  Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018;68:280-95.
               78.  Iannucci LF, Sun J, Singh BK, Zhou J, Kaddai VA, et al. Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells.
                   Biochem Biophys Res Commun 2016;480:461-7.
               79.  Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG. Review article: can bugs be drugs? The potential of probiotics and prebiotics
                   as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2019;50:628-39.
               80.  Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, et al. Role of the normal gut microbiota. World J Gastroenterol
                   2015;21:8787-803.
               81.  Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for
                   non-alcoholic steatohepatitis development. J Hepatol 2019;71:1216-28.
               82.  Liu Q, Liu S, Chen L, Zhao Z, Du S, et al. Role and effective therapeutic target of gut microbiota in NAFLD/NASH. Exp Ther Med
                   2019;18:1935-44.
               83.  Kim HN, Joo EJ, Cheong HS, Kim Y, Kim HL, et al. Gut microbiota and risk of persistent nonalcoholic fatty liver diseases. J Clin
                   Med 2019;8:E1089.
               84.  Jasirwan COM, Lesmana CRA, Hasan I, Sulaiman AS, Gani RA. The role of gut microbiota in non-alcoholic fatty liver disease:
                   pathways of mechanisms. Biosci Microbiota Food Health 2019;38:81-8.
               85.  Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016;13:412-25.
               86.  Ezzaidi N, Zhang X, Coker OO, Yu J. New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease
                   and its associated liver cancer. Cancer Lett 2019;459:186-91.
               87.  Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through
                   senescence secretome. Nature 2013;499:97-101.
               88.  Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and
                   TLR4. Cancer Cell 2012;21:504-16.
               89.  Chu H, Williams B, Schnabl B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res 2018;2:43-51.
               90.  Nguyen J, Jiao J, Smoot K, Watt GP, Zhao C, et al. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in
                   obesity and steatohepatitis. Oncotarget 2018;9:29495-507.
               91.  Liu Y, Yan W, Tohme S, Chen M, Fu Y, et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in
                   hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 2015;63:114-21.
               92.  Brandi G, De Lorenzo S, Candela M, Pantaleo MA, Bellentani S, et al. Microbiota, NASH, HCC and the potential role of probiotics.
                   Carcinogenesis 2017;38:231-40.
               93.  Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, et al. Role of farnesoid X receptor and bile acids in hepatic tumor development.
                   Hepatol Commun 2018;2:1567-82.
               94.  He G, Karin M. NF-kappa B and STAT3 - key players in liver inflammation and cancer. Cell Res 2011;21:159-68.
               95.  Park EJ, Lee JH, Yu GY, He G, Ali SR, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing
   26   27   28   29   30   31   32   33   34   35   36