Page 31 - Read Online
        P. 31
     Page 10 of 11                                              Raza et al. Hepatoma Res 2019;5:42  I  http://dx.doi.org/10.20517/2394-5079.2019.014
                   pathogenesis. J Lipid Res 2016;57:1758-70.
               62.  Garcia-Ruiz C, Fernandez-Checa JC. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease. Hepatol Commun
                   2018;2:1425-39.
               63.  Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver
                   disease. Oxid Med Cell Longev 2018;2018:9547613.
               64.  Fu Y, Chung FL. Oxidative stress and hepatocarcinogenesis. Hepatoma Res 2018;4.
               65.  Nishida N, Yada N, Hagiwara S, Sakurai T, Kitano M, et al. Unique features associated with hepatic oxidative DNA damage and DNA
                   methylation in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2016;31:1646-53.
               66.  Song MJ, Malhi H. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther
                   2019;203:107401.
               67.  Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D, et al. ER stress cooperates with hypernutrition to trigger TNF-
                   dependent spontaneous HCC development. Cancer Cell 2014;26:331-43.
               68.  Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-related HCC. Adv Exp Med Biol 2018;1061:127-38.
               69.  Tian Y, Yang B, Qiu W, Hao Y, Zhang Z, et al. ER-residential Nogo-B accelerates NAFLD-associated HCC mediated by metabolic
                   reprogramming of oxLDL lipophagy. Nat Commun 2019;10:3391.
               70.  Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during
                   selective autophagy. Mol Cell 2013;51:618-31.
               71.  Sinha RA, Singh BK, Zhou J, Wu Y, Farah BL, et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via
                   ROS-AMPK-ULK1 signaling. Autophagy 2015;11:1341-57.
               72.  Sun K, Xu L, Jing Y, Han Z, Chen X, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-
                   kappaB-IL1alpha/beta-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis. Cancer Lett
                   2017;388:198-207.
               73.  Kanno M, Kawaguchi K, Honda M, Horii R, Takatori H, et al. Serum aldo-keto reductase family 1 member B10 predicts advanced
                   liver fibrosis and fatal complications of nonalcoholic steatohepatitis. J Gastroenterol 2019;54:549-57.
               74.  Arendt BM, Teterina A, Pettinelli P, Comelli EM, Ma DWL, et al. Cancer-related gene expression is associated with disease severity
                   and modifiable lifestyle factors in non-alcoholic fatty liver disease. Nutrition 2019;62:100-7.
               75.  Torres-Mena JE, Salazar-Villegas KN, Sanchez-Rodriguez R, Lopez-Gabino B, Del Pozo-Yauner L, et al. Aldo-Keto reductases as
                   early biomarkers of hepatocellular carcinoma: a comparison between animal models and human HCC. Dig Dis Sci 2018;63:934-44.
               76.  Nikolaou N, Gathercole LL, Marchand L, Althari S, Dempster NJ, et al. AKR1D1 is a novel regulator of metabolic phenotype in
                   human hepatocytes and is dysregulated in non-alcoholic fatty liver disease. Metabolism 2019;99:67-80.
               77.  Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018;68:280-95.
               78.  Iannucci LF, Sun J, Singh BK, Zhou J, Kaddai VA, et al. Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells.
                   Biochem Biophys Res Commun 2016;480:461-7.
               79.  Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG. Review article: can bugs be drugs? The potential of probiotics and prebiotics
                   as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2019;50:628-39.
               80.  Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, et al. Role of the normal gut microbiota. World J Gastroenterol
                   2015;21:8787-803.
               81.  Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for
                   non-alcoholic steatohepatitis development. J Hepatol 2019;71:1216-28.
               82.  Liu Q, Liu S, Chen L, Zhao Z, Du S, et al. Role and effective therapeutic target of gut microbiota in NAFLD/NASH. Exp Ther Med
                   2019;18:1935-44.
               83.  Kim HN, Joo EJ, Cheong HS, Kim Y, Kim HL, et al. Gut microbiota and risk of persistent nonalcoholic fatty liver diseases. J Clin
                   Med 2019;8:E1089.
               84.  Jasirwan COM, Lesmana CRA, Hasan I, Sulaiman AS, Gani RA. The role of gut microbiota in non-alcoholic fatty liver disease:
                   pathways of mechanisms. Biosci Microbiota Food Health 2019;38:81-8.
               85.  Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016;13:412-25.
               86.  Ezzaidi N, Zhang X, Coker OO, Yu J. New insights and therapeutic implication of gut microbiota in non-alcoholic fatty liver disease
                   and its associated liver cancer. Cancer Lett 2019;459:186-91.
               87.  Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through
                   senescence secretome. Nature 2013;499:97-101.
               88.  Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and
                   TLR4. Cancer Cell 2012;21:504-16.
               89.  Chu H, Williams B, Schnabl B. Gut microbiota, fatty liver disease, and hepatocellular carcinoma. Liver Res 2018;2:43-51.
               90.  Nguyen J, Jiao J, Smoot K, Watt GP, Zhao C, et al. Toll-like receptor 4: a target for chemoprevention of hepatocellular carcinoma in
                   obesity and steatohepatitis. Oncotarget 2018;9:29495-507.
               91.  Liu Y, Yan W, Tohme S, Chen M, Fu Y, et al. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in
                   hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 2015;63:114-21.
               92.  Brandi G, De Lorenzo S, Candela M, Pantaleo MA, Bellentani S, et al. Microbiota, NASH, HCC and the potential role of probiotics.
                   Carcinogenesis 2017;38:231-40.
               93.  Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, et al. Role of farnesoid X receptor and bile acids in hepatic tumor development.
                   Hepatol Commun 2018;2:1567-82.
               94.  He G, Karin M. NF-kappa B and STAT3 - key players in liver inflammation and cancer. Cell Res 2011;21:159-68.
               95.  Park EJ, Lee JH, Yu GY, He G, Ali SR, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing
     	
