Page 34 - Read Online
P. 34

Page 12 of 13                                                     Li et al. Hepatoma Res 2020;6:15  I  http://dx.doi.org/10.20517/2394-5079.2019.34


               96.  Zhang Q, Bi J, Zheng X, Chen Y, Wang H, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits
                   potent anti-tumor immunity. Nat Immunol 2018;19:723-32.
               97.  Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell
                   cytotoxicity. Proc Natl Acad Sci U S A 2009;106:17858-63.
               98.  Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-
                   viral activity. Nature 2017;551:110-4.
               99.  Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR, et al. Tim-3 marks human natural killer cell maturation and suppresses
                   cell-mediated cytotoxicity. Blood 2012;119:3734-43.
               100. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, et al. The receptors CD96 and CD226 oppose each other in
                   the regulation of natural killer cell functions. Nat Immunol 2014;15:431-8.
                                                                                    +
               101. Zhao Q, Huang ZL, He M, Gao Z, Kuang DM. BTLA identifies dysfunctional PD-1-expressing CD4  T cells in human hepatocellular
                   carcinoma. Oncoimmunology 2016;5:e1254855.
               102. Wang J, Sun J, Liu LN, Flies DB, Nie X, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer
                   immunotherapy. Nat Med 2019;25:656-66.
               103. Wehrenberg-Klee E, Goyal L, Dugan M, Zhu AX, Ganguli S. Y-90 radioembolization combined with a PD-1 inhibitor for advanced
                   hepatocellular carcinoma. Cardiovasc Intervent Radiol 2018;41:1799-802.
               104. Shigeta K, Datta M, Hato T, Kitahara S, Chen IX, et al. Dual programmed death receptor-1 and vascular endothelial growth factor
                   receptor-2 blockade promotes vascular normalization and enhances antitumor immune responses in hepatocellular carcinoma.
                   Hepatology 2019.
               105. Sawada Y, Yoshikawa T, Shimomura M, Iwama T, Endo I, et al. Programmed death-1 blockade enhances the antitumor effects of
                   peptide vaccine-induced peptide-specific cytotoxic T lymphocytes. Int J Oncol 2015;46:28-36.
               106. Ljunggren HG, Kärre K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 1990;11:237-44.
               107. Shifrin N, Raulet DH, Ardolino M. NK cell self tolerance, responsiveness and missing self recognition. Semin Immunol 2014;26:138-44.
               108. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, et al. Observations on the systemic administration of autologous
                   lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985;313:1485-92.
               109. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, et al. Successful adoptive transfer and in vivo expansion of
                   human haploidentical NK cells in patients with cancer. Blood 2005;105:3051-7.
               110. Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, et al. Cytokine-induced memory-like natural killer cells exhibit
                   enhanced responses against myeloid leukemia. Sci Transl Med 2016;8:357ra123.
               111.  Lin M, Liang S, Wang X, Liang Y, Zhang M, et al. Cryoablation combined with allogenic natural killer cell immunotherapy improves
                   the curative effect in patients with advanced hepatocellular cancer. Oncotarget 2017;8:81967-77.
               112. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, et al. Treatment of patients with advanced cancer with the natural killer cell
                   line NK-92. Cytotherapy 2013;15:1563-70.
               113. Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK
                   cell resistance in B-cell malignancies. J Cell Mol Med 2016;20:1287-94.
               114. Yu M, Luo H, Fan M, Wu X, Shi B, et al. Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for
                   the treatment of hepatocellular carcinoma. Mol Ther 2018;26:366-78.
               115. Xiao Z, Wang CQ, Feng JH, Zhou MH, Wang YZ, et al. Effectiveness and safety of chemotherapy with cytokine-induced killer cells
                   in non-small cell lung cancer: a systematic review and meta-analysis of 32 randomized controlled trials. Cytotherapy 2019;21:125-47.
               116. Jia CC, Chen YH, Cai XR, Li Y, Zheng XF, et al. Efficacy of cytokine-induced killer cell-based immunotherapy for hepatocellular
                   carcinoma. Am J Cancer Res 2019;9:1254-65.
               117. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for
                   hepatocellular carcinoma. Gastroenterology 2015;148:1383-91.e6.
               118. Lee JH, Lee JH, Lim YS, Yeon JE, Song TJ, et al. Sustained efficacy of adjuvant immunotherapy with cytokine-induced killer cells for
                   hepatocellular carcinoma: an extended 5-year follow-up. Cancer Immunol Immunother 2019;68:23-32.
               119. Chang B, Shen L, Wang K, Jin J, Huang T, et al. High number of PD-1 positive intratumoural lymphocytes predicts survival benefit of
                   cytokine-induced killer cells for hepatocellular carcinoma patients. Liver Int 2018;38:1449-58.
               120. Pan QZ, Liu Q, Zhou YQ, Zhao JJ, Wang QJ, et al. CIK cell cytotoxicity is a predictive biomarker for CIK cell immunotherapy in
                   postoperative patients with hepatocellular carcinoma. Cancer Immunol Immunother 2020; Epub ahead of print. doi:10.1007/s00262-
                   020-02486-y
               121. Wang XP, Xu M, Gao HF, Zhao JF, Xu KC. Intraperitoneal perfusion of cytokine-induced killer cells with local hyperthermia for
                   advanced hepatocellular carcinoma. World J Gastroenterol 2013;19:2956-62.
               122. Liu Y, Chen X, Han W, Zhang Y. Tisagenlecleucel, an approved anti-CD19 chimeric antigen receptor T-cell therapy for the treatment
                   of leukemia. Drugs Today (Barc) 2017;53:597-608.
               123. Zhu ZW, Friess H, Wang L, Abou-Shady M, Zimmermann A, et al. Enhanced glypican-3 expression differentiates the majority of
                   hepatocellular carcinomas from benign hepatic disorders. Gut 2001;48:558-64.
               124. Filmus J, Capurro M. Glypican-3: a marker and a therapeutic target in hepatocellular carcinoma. FEBS J 2013;280:2471-6.
               125. Abou-Alfa GK, Puig O, Daniele B, Kudo M, Merle P, et al. Randomized phase II placebo controlled study of codrituzumab in
                   previously treated patients with advanced hepatocellular carcinoma. J Hepatol 2016;65:289-95.
               126. Ishiguro T, Sano Y, Komatsu SI, Kamata-Sakurai M, Kaneko A, et al. An anti-glypican 3/CD3 bispecific T cell-redirecting antibody
                   for treatment of solid tumors. Sci Transl Med 2017;9:eaal4291.
               127. Gao H, Li K, Tu H, Pan X, Jiang H, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular
                   carcinoma. Clin Cancer Res 2014;20:6418-28.
   29   30   31   32   33   34   35   36   37   38   39