Page 80 - Read Online
P. 80
Chávez-López et al. Hepatoma Res 2020;6:14 I http://dx.doi.org/10.20517/2394-5079.2019.023 Page 15 of 16
vitro and in vivo study. Cell Biol Int 2014;38:1003-12.
92. Starr SP, Raines D. Cirrhosis: diagnosis, management, and prevention. Am Fam Physician 2011;84:1353-9.
93. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet 2014;383:1749-61.
94. Romanelli RG, Stasi C. Recent advancements in diagnosis and therapy of liver cirrhosis. Curr Drug Targets 2016;17:1804-17.
95. Liu G, Xie C, Sun F, Xu X, Yang Y, et al. Clinical significance of transient receptor potential vanilloid 2 expression in human
hepatocellular carcinoma. Cancer Genet Cytogenet 2010;197:54-9.
96. Zúñiga-García V, Chávez-López Mde G, Quintanar-Jurado V, Gabiño-López NB, Hernández-Gallegos E, et al. Differential expression of
ion channels and transporters during hepatocellular carcinoma development. Dig Dis Sci 2015;60:2373-83.
97. Dufour JF, Luthi M, Forestier M, Magnino F. Expression of inositol 1,4,5-trisphosphate receptor isoforms in rat cirrhosis. Hepatology
1999;30:1018-26.
98. Xian ZH, Cong WM, Wang YH, Wang B, Wu MC. Expression and localization of aquaporin-1 in human cirrhotic liver. Pathol Res Pract
2009;205:774-80.
99. Yokomori H, Oda M, Yoshimura K, Kaneko F, Hibi T. Aquaporin-1 associated with hepatic arterial capillary proliferation on hepatic
sinusoid in human cirrhotic liver. Liver Int 2011;31:1554-64.
100. Fabrega E, Berja A, Garcia-Unzueta MT, Guerra-Ruiz A, Cobo M, et al. Influence of aquaporin-1 gene polymorphism on water retention
in liver cirrhosis. Scand J Gastroenterol 2011;46:1267-74.
101. Rodríguez-Vilarrupla A, Graupera M, Matei V, Bataller R, Abraldes JG, et al. Large-conductance calcium-activated potassium channels
modulate vascular tone in experimental cirrhosis. Liver Int 2008;28:566-73.
102. Yu Z, Serra A, Sauter D, Loffing J, Ackermann D, et al. Sodium retention in rats with liver cirrhosis is associated with increased renal
abundance of NaCl cotransporter (NCC). Nephrol Dial Transplant 2005;20:1833-41.
2+
103. Yang XW, Liu JW, Zhang RC, Yin Q, Shen WZ, et al. Inhibitory effects of blockage of intermediate conductance Ca -activated K +
channels on proliferation of hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci 2013;33:86-89.
104. Freise C, Ruehl M, Seehofer D, Hoyer J, Somasundaram R. The inhibitor of Ca -dependent K channels TRAM-34 blocks growth of
+
2+
hepatocellular carcinoma cells via downregulation of estrogen receptor alpha mRNA and nuclear factor-kappaB. Invest New Drugs
2013;31:452-7.
105. Fan H, Zhang M, Liu W. Hypermethylated KCNQ1 acts as a tumor suppressor in hepatocellular carcinoma. Biochem Biophys Res
Commun 2018;503:3100-7.
106. Zhang K, Mu L, Ding MC, Xu R, Ding ZJ, et al. NFkappaB mediated elevation of KCNJ11 promotes tumor progression of hepatocellular
carcinoma through interaction of lactate dehydrogenase A. Biochem Biophys Res Commun 2018;495:246-53.
107. Pardo LA, Stuhmer W. Eag1: an emerging oncological target. Cancer Res 2008;68:1611-3.
108. Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 2009;8:982-1001.
+
109. Pardo LA, del Camino D, Sanchez A, Alves F, Bruggemann A, et al. Oncogenic potential of EAG K channels. EMBO J 1999;18:5540-7.
110. Rodríguez-Rasgado JA, Acuña-Macías I, Camacho J. Eag1 channels as potential cancer biomarkers. Sensors (Basel) 2012;12:5986-95.
111. Farias LM, Ocana DB, Diaz L, Larrea F, Avila-Chavez E, et al. Ether a go-go potassium channels as human cervical cancer markers.
Cancer Res 2004;64:6996-7001.
112. Gómez-Varela D, Zwick-Wallasch E, Knötgen H, Sánchez A, Hettmann T, et al. Monoclonal antibody blockade of the human Eag1
potassium channel function exerts antitumor activity. Cancer Res 2007;67:7343-9.
113. García-Becerra R, Díaz L, Camacho J, Barrera D, Ordaz-Rosado D, et al. Calcitriol inhibits Ether-a go-go potassium channel expression
and cell proliferation in human breast cancer cells. Exp Cell Res 2010;316:433-42.
114. Weber C, Mello de Queiroz F, Downie BR, Suckow A, Stuhmer W, et al. Silencing the activity and proliferative properties of the human
EagI Potassium Channel by RNA Interference. J Biol Chem 2006;281:13030-7.
115. de Guadalupe Chávez-López M, Pérez-Carreón JI, Zuñiga-García V, Díaz-Chávez J, Herrera LA, et al. Astemizole-based anticancer
therapy for hepatocellular carcinoma (HCC), and Eag1 channels as potential early-stage markers of HCC. Tumour Biol 2015;36:6149-58.
116. Dziegielewska B, Gray LS, Dziegielewski J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch
2014;466:801-10.
117. Li Y, Liu S, Lu F, Zhang T, Chen H, et al. A role of functional T-type Ca channel in hepatocellular carcinoma cell proliferation. Oncol
2+
Rep 2009;22:1229-35.
118. Xie R, Xu J, Wen G, Jin H, Liu X, et al. The P2Y2 nucleotide receptor mediates the proliferation and migration of human hepatocellular
carcinoma cells induced by ATP. J Biol Chem 2014;289:19137-49.
119. Maynard JP, Lee JS, Sohn BH, Yu X, Lopez-Terrada D, et al. P2X3 purinergic receptor overexpression is associated with poor recurrence-
free survival in hepatocellular carcinoma patients. Oncotarget 2015;6:41162-79.
120. Yang N, Tang Y, Wang F, Zhang H, Xu D, et al. Blockade of store-operated Ca entry inhibits hepatocarcinoma cell migration and
2+
invasion by regulating focal adhesion turnover. Cancer Lett 2013;330:163-9.
2+
121. Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, et al. Inhibition of Orai1-mediated Ca entry enhances chemosensitivity of HepG2
hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med 2017;21:904-15.
122. Wang R, Kang B, Hu R, Huang Y, Qin Z, et al. ClC-3 chloride channel protein induces G1 arrest in hepatocellular carcinoma Hep3B
cells. Oncol Rep 2018;40:472-8.
123. Wei X, Li J, Xie H, Wang H, Wang J, et al. Chloride intracellular channel 1 participates in migration and invasion of hepatocellular
carcinoma by targeting maspin. J Gastroenterol Hepatol 2015;30:208-16.
124. Guo G, Cui Y, Chen H, Zhang L, Zhao M, et al. Analgesic-antitumor peptide inhibits the migration and invasion of HepG2 cells by an