Page 44 - Read Online
P. 44

Afyouni et al. Hepatoma Res 2023;9:28  https://dx.doi.org/10.20517/2394-5079.2023.29  Page 13 of 14

                   contrast agent Gadobenate dimeglumine. PLoS One 2017;12:e0180349.  DOI  PubMed  PMC
               70.      Dendl K, Koerber SA, Kratochwil C, et al. FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis?
                   Cancers 2021;13:4946.  DOI  PubMed  PMC
                                                                                       18
               71.      Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT: will it end the hegemony of  F-FDG in oncology? J Nucl
                   Med 2021;62:296-302.  DOI
               72.      Veldhuijzen van Zanten SEM, Pieterman KJ, Wijnhoven BPL, et al. FAPI PET versus FDG PET, CT or MRI for staging pancreatic-,
                   gastric- and cholangiocarcinoma: systematic review and head-to-head comparisons of diagnostic performances. Diagnostics
                   2022;12:1958.  DOI  PubMed  PMC
               73.      Corona-Villalobos CP, Kamel IR. Functional volumetric MRI in assessing treatment response to intra-arterial therapy of primary and
                   secondary liver tumors. J Comput Assist Tomogr 2014;38:513-7.  DOI  PubMed
               74.      Suzuki C, Torkzad MR, Jacobsson H, et al. Interobserver and intraobserver variability in the response evaluation of cancer therapy
                   according to RECIST and WHO-criteria. Acta Oncol 2010;49:509-14.  DOI
               75.      Chung YE, Kim MJ, Park YN, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics
                   2009;29:683-700.  DOI
               76.      Halappa VG, Bonekamp S, Corona-Villalobos CP, et al. Intrahepatic cholangiocarcinoma treated with local-regional therapy:
                   quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response. Radiology 2012;264:285-94.  DOI
               77.      Pandey A, Pandey P, Aliyari Ghasabeh M, et al. Unresectable intrahepatic cholangiocarcinoma: multiparametric mr imaging to predict
                   patient survival. Radiology 2018;288:109-17.  DOI
               78.      Pandey A, Pandey P, Ghasabeh MA, et al. Baseline volumetric multiparametric mri: can it be used to predict survival in patients with
                   unresectable intrahepatic cholangiocarcinoma undergoing transcatheter arterial chemoembolization? Radiology 2018;289:843-53.  DOI
               79.      Cucchetti A, Cappelli A, Mosconi C, et al. Improving patient selection for selective internal radiation therapy of intra-hepatic
                   cholangiocarcinoma: a meta-regression study. Liver Int 2017;37:1056-64.  DOI
               80.      Ibrahim SM, Mulcahy MF, Lewandowski RJ, et al. Treatment of unresectable cholangiocarcinoma using Yttrium-90 microspheres:
                   results from a pilot study. Cancer 2008;113:2119-28.  DOI
               81.      Rafi S, Piduru SM, El-Rayes B, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic
                   cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol 2013;36:440-8.  DOI
               82.      Mouli S, Memon K, Baker T, et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival
                   analysis. J Vasc Interv Radiol 2013;24:1227-34.  DOI
               83.      Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best
                   respond to radioembolisation. Eur Radiol 2020;30:4534-44.  DOI
               84.      Hermann AL, Dieudonné A, Ronot M, et al; SARAH trial group. Relationship of tumor radiation-absorbed dose to survival and
                                                                                90
                   response in hepatocellular carcinoma treated with transarterial radioembolization with  Y in the SARAH study. Radiology
                   2020;296:673-84.  DOI
               85.      Roosen J, Westlund Gotby LEL, Arntz MJ, et al. Intraprocedural MRI-based dosimetry during transarterial radioembolization of liver
                   tumours with holmium-166 microspheres (EMERITUS-1): a phase I trial towards adaptive, image-controlled treatment delivery. Eur J
                   Nucl Med Mol Imaging 2022;49:4705-15.  DOI  PubMed  PMC
               86.      Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321-30.  DOI
               87.      Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 2016;27:1492-504.  DOI
               88.      Shields AF, Jacobs PM, Sznol M, et al. Immune modulation therapy and imaging: workshop report. J Nucl Med 2018;59:410-7.  DOI
               89.      Ku YJ, Kim HH, Cha JH, et al. Correlation between MRI and the level of tumor-infiltrating lymphocytes in patients with triple-
                   negative breast cancer. AJR Am J Roentgenol 2016;207:1146-51.  DOI
               90.      Ku YJ, Kim HH, Cha JH, et al. Predicting the level of tumor infiltrating lymphocytes in patients with triple-negative breast cancer:
                   Usefulness of breast MRI computer-aided detection and diagnosis. J Magn Reson Imaging 2018;47:760-6.  DOI
               91.      Zhang J, Wu Z, Zhao J, et al. Intrahepatic cholangiocarcinoma: MRI texture signature as predictive biomarkers of immunophenotyping
                   and survival. Eur Radiol 2021;31:3661-72.  DOI
               92.      Sebastian NT, Tan Y, Miller ED, Williams TM, Alexandra Diaz D. Stereotactic body radiation therapy is associated with improved
                   overall survival compared to chemoradiation or radioembolization in the treatment of unresectable intrahepatic cholangiocarcinoma.
                   Clin Transl Radiat Oncol 2019;19:66-71.  DOI  PubMed  PMC
               93.      Brunner TB, Blanck O, Lewitzki V, et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of
                   patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 2019;132:42-7.  DOI
               94.      Brook OR, Thornton E, Mendiratta-Lala M, et al. CT imaging findings after stereotactic radiotherapy for liver tumors. Gastroenterol
                   Res Pract 2015;2015:126245.  DOI
               95.      Navin PJ, Olson MC, Mendiratta-Lala M, Hallemeier CL, Torbenson MS, Venkatesh SK. Imaging features in the liver after
                   stereotactic body radiation therapy. Radiographics 2022;42:2131-48.  DOI  PubMed
               96.      Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation
                   therapy. J Radiat Res 2019;60:150-7.  DOI  PubMed  PMC
               97.      Peng Q, Shen Y, Fu K, et al. Artificial intelligence prediction model for overall survival of clear cell renal cell carcinoma based on a
                   21-gene molecular prognostic score system. Aging 2021;13:7361-81.  DOI  PubMed  PMC
               98.      He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat
   39   40   41   42   43   44   45   46   47   48   49