Page 44 - Read Online
P. 44
Afyouni et al. Hepatoma Res 2023;9:28 https://dx.doi.org/10.20517/2394-5079.2023.29 Page 13 of 14
contrast agent Gadobenate dimeglumine. PLoS One 2017;12:e0180349. DOI PubMed PMC
70. Dendl K, Koerber SA, Kratochwil C, et al. FAP and FAPI-PET/CT in malignant and non-malignant diseases: a perfect symbiosis?
Cancers 2021;13:4946. DOI PubMed PMC
18
71. Hicks RJ, Roselt PJ, Kallur KG, Tothill RW, Mileshkin L. FAPI PET/CT: will it end the hegemony of F-FDG in oncology? J Nucl
Med 2021;62:296-302. DOI
72. Veldhuijzen van Zanten SEM, Pieterman KJ, Wijnhoven BPL, et al. FAPI PET versus FDG PET, CT or MRI for staging pancreatic-,
gastric- and cholangiocarcinoma: systematic review and head-to-head comparisons of diagnostic performances. Diagnostics
2022;12:1958. DOI PubMed PMC
73. Corona-Villalobos CP, Kamel IR. Functional volumetric MRI in assessing treatment response to intra-arterial therapy of primary and
secondary liver tumors. J Comput Assist Tomogr 2014;38:513-7. DOI PubMed
74. Suzuki C, Torkzad MR, Jacobsson H, et al. Interobserver and intraobserver variability in the response evaluation of cancer therapy
according to RECIST and WHO-criteria. Acta Oncol 2010;49:509-14. DOI
75. Chung YE, Kim MJ, Park YN, et al. Varying appearances of cholangiocarcinoma: radiologic-pathologic correlation. Radiographics
2009;29:683-700. DOI
76. Halappa VG, Bonekamp S, Corona-Villalobos CP, et al. Intrahepatic cholangiocarcinoma treated with local-regional therapy:
quantitative volumetric apparent diffusion coefficient maps for assessment of tumor response. Radiology 2012;264:285-94. DOI
77. Pandey A, Pandey P, Aliyari Ghasabeh M, et al. Unresectable intrahepatic cholangiocarcinoma: multiparametric mr imaging to predict
patient survival. Radiology 2018;288:109-17. DOI
78. Pandey A, Pandey P, Ghasabeh MA, et al. Baseline volumetric multiparametric mri: can it be used to predict survival in patients with
unresectable intrahepatic cholangiocarcinoma undergoing transcatheter arterial chemoembolization? Radiology 2018;289:843-53. DOI
79. Cucchetti A, Cappelli A, Mosconi C, et al. Improving patient selection for selective internal radiation therapy of intra-hepatic
cholangiocarcinoma: a meta-regression study. Liver Int 2017;37:1056-64. DOI
80. Ibrahim SM, Mulcahy MF, Lewandowski RJ, et al. Treatment of unresectable cholangiocarcinoma using Yttrium-90 microspheres:
results from a pilot study. Cancer 2008;113:2119-28. DOI
81. Rafi S, Piduru SM, El-Rayes B, et al. Yttrium-90 radioembolization for unresectable standard-chemorefractory intrahepatic
cholangiocarcinoma: survival, efficacy, and safety study. Cardiovasc Intervent Radiol 2013;36:440-8. DOI
82. Mouli S, Memon K, Baker T, et al. Yttrium-90 radioembolization for intrahepatic cholangiocarcinoma: safety, response, and survival
analysis. J Vasc Interv Radiol 2013;24:1227-34. DOI
83. Mosconi C, Cucchetti A, Bruno A, et al. Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best
respond to radioembolisation. Eur Radiol 2020;30:4534-44. DOI
84. Hermann AL, Dieudonné A, Ronot M, et al; SARAH trial group. Relationship of tumor radiation-absorbed dose to survival and
90
response in hepatocellular carcinoma treated with transarterial radioembolization with Y in the SARAH study. Radiology
2020;296:673-84. DOI
85. Roosen J, Westlund Gotby LEL, Arntz MJ, et al. Intraprocedural MRI-based dosimetry during transarterial radioembolization of liver
tumours with holmium-166 microspheres (EMERITUS-1): a phase I trial towards adaptive, image-controlled treatment delivery. Eur J
Nucl Med Mol Imaging 2022;49:4705-15. DOI PubMed PMC
86. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature 2017;541:321-30. DOI
87. Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol 2016;27:1492-504. DOI
88. Shields AF, Jacobs PM, Sznol M, et al. Immune modulation therapy and imaging: workshop report. J Nucl Med 2018;59:410-7. DOI
89. Ku YJ, Kim HH, Cha JH, et al. Correlation between MRI and the level of tumor-infiltrating lymphocytes in patients with triple-
negative breast cancer. AJR Am J Roentgenol 2016;207:1146-51. DOI
90. Ku YJ, Kim HH, Cha JH, et al. Predicting the level of tumor infiltrating lymphocytes in patients with triple-negative breast cancer:
Usefulness of breast MRI computer-aided detection and diagnosis. J Magn Reson Imaging 2018;47:760-6. DOI
91. Zhang J, Wu Z, Zhao J, et al. Intrahepatic cholangiocarcinoma: MRI texture signature as predictive biomarkers of immunophenotyping
and survival. Eur Radiol 2021;31:3661-72. DOI
92. Sebastian NT, Tan Y, Miller ED, Williams TM, Alexandra Diaz D. Stereotactic body radiation therapy is associated with improved
overall survival compared to chemoradiation or radioembolization in the treatment of unresectable intrahepatic cholangiocarcinoma.
Clin Transl Radiat Oncol 2019;19:66-71. DOI PubMed PMC
93. Brunner TB, Blanck O, Lewitzki V, et al. Stereotactic body radiotherapy dose and its impact on local control and overall survival of
patients for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. Radiother Oncol 2019;132:42-7. DOI
94. Brook OR, Thornton E, Mendiratta-Lala M, et al. CT imaging findings after stereotactic radiotherapy for liver tumors. Gastroenterol
Res Pract 2015;2015:126245. DOI
95. Navin PJ, Olson MC, Mendiratta-Lala M, Hallemeier CL, Torbenson MS, Venkatesh SK. Imaging features in the liver after
stereotactic body radiation therapy. Radiographics 2022;42:2131-48. DOI PubMed
96. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation
therapy. J Radiat Res 2019;60:150-7. DOI PubMed PMC
97. Peng Q, Shen Y, Fu K, et al. Artificial intelligence prediction model for overall survival of clear cell renal cell carcinoma based on a
21-gene molecular prognostic score system. Aging 2021;13:7361-81. DOI PubMed PMC
98. He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K. The practical implementation of artificial intelligence technologies in medicine. Nat