Page 42 - Read Online
P. 42

Afyouni et al. Hepatoma Res 2023;9:28  https://dx.doi.org/10.20517/2394-5079.2023.29  Page 11 of 14

               12.      Fattach HE, Dohan A, Guerrache Y, et al. Intrahepatic and hilar mass-forming cholangiocarcinoma: Qualitative and quantitative
                   evaluation with diffusion-weighted MR imaging. Eur J Radiol 2015;84:1444-51.  DOI
               13.      Park HJ, Kim YK, Park MJ, Lee WJ. Small intrahepatic mass-forming cholangiocarcinoma: target sign on diffusion-weighted imaging
                   for differentiation from hepatocellular carcinoma. Abdom Imaging 2013;38:793-801.  DOI
               14.      Zou X, Luo Y, Li Z, et al. Volumetric apparent diffusion coefficient histogram analysis in differentiating intrahepatic mass-forming
                   cholangiocarcinoma from hepatocellular carcinoma. J Magn Reson Imaging 2019;49:975-83.  DOI  PubMed
               15.      Joo I, Lee JM, Yoon JH. Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: recent advances and challenges.
                   Radiology 2018;288:7-13.  DOI  PubMed
               16.      Heye T, Merkle EM, Reiner CS, et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part II. comparison of intra- and
                   interobserver variability with manual region of interest placement versus semiautomatic lesion segmentation and histogram analysis.
                   Radiology 2013;266:812-21.  DOI
               17.      Apisarnthanarax S, Barry A, Cao M, et al. External beam radiation therapy for primary liver cancers: an ASTRO clinical practice
                   guideline. Pract Radiat Oncol 2022;12:28-51.  DOI
               18.      Kang Y, Lee JM, Kim SH, Han JK, Choi BI. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-
                   enhanced MR images. Radiology 2012;264:751-60.  DOI  PubMed
               19.      Hyder O, Marques H, Pulitano C, et al. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma:
                   an Eastern and Western experience. JAMA Surg 2014;149:432-8.  DOI
               20.      Spolverato G, Ejaz A, Kim Y, et al. Tumor size predicts vascular invasion and histologic grade among patients undergoing resection of
                   intrahepatic cholangiocarcinoma. J Gastrointest Surg 2014;18:1284-91.  DOI
               21.      Mavros  MN,  Economopoulos  KP,  Alexiou  VG,  Pawlik  TM.  Treatment  and  Prognosis  for  patients  with  intrahepatic
                   cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg 2014;149:565-74.  DOI  PubMed
               22.      Wang Y, Li J, Xia Y, et al. Prognostic nomogram for intrahepatic cholangiocarcinoma after partial hepatectomy. J Clin Oncol
                   2013;31:1188-95.  DOI
               23.      Amin MB, Greene FL, Edge SB, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-
                   based to a more “personalized” approach to cancer staging. CA Cancer J Clin 2017;67:93-9.  DOI  PubMed
               24.      Ma K, Dong B, Wang L, et al. Nomograms for predicting overall survival and cancer-specific survival in patients with surgically
                   resected intrahepatic cholangiocarcinoma. Cancer Manag Res 2019;11:6907-29.  DOI  PubMed  PMC
               25.      Shen H, Zhang S, Xia Y, et al. A nomogram in predicting risks of intrahepatic cholangiocarcinoma after partial hepatectomy for
                   hepatolithiasis. J Gastrointest Surg 2021;25:2258-67.  DOI
               26.      Aherne EA, Pak LM, Goldman DA, et al. Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor
                   genetics? Abdom Radiol 2018;43:2665-72.  DOI  PubMed  PMC
               27.      Zhao L, Ma X, Liang M, et al. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic
                   resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging 2019;19:49.  DOI  PubMed  PMC
               28.      Xue B, Wu S, Zhang M, et al. A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic
                   cholangiocarcinoma from inflammatory mass with hepatolithiasis. Abdom Radiol 2021;46:3835-44.  DOI
               29.      Ren S, Li Q, Liu S, et al. Clinical value of machine learning-based ultrasomics in preoperative differentiation between hepatocellular
                   carcinoma and intrahepatic cholangiocarcinoma: a multicenter study. Front Oncol 2021;11:749137.  DOI  PubMed  PMC
               30.      Xue  B,  Wu  S,  Zheng  M,  et  al.  Development  and  validation  of  a  radiomic-based  model  for  prediction  of  intrahepatic
                   cholangiocarcinoma  in  patients  with  intrahepatic  lithiasis  complicated  by  imagologically  diagnosed  mass.  Front  Oncol
                   2020;10:598253.  DOI  PubMed  PMC
               31.      Zhang J, Wu Z, Zhang X, et al. Machine learning: an approach to preoperatively predict PD-1/PD-L1 expression and outcome in
                   intrahepatic cholangiocarcinoma using MRI biomarkers. ESMO Open 2020;5:e000910.  DOI  PubMed  PMC
               32.      Wang Y, Shao J, Wang P, et al. Deep learning radiomics to predict regional lymph node staging for hilar cholangiocarcinoma. Front
                   Oncol 2021;11:721460.  DOI  PubMed  PMC
               33.      Xu L, Wan Y, Luo C, et al. Integrating intratumoral and peritumoral features to predict tumor recurrence in intrahepatic
                   cholangiocarcinoma. Phys Med Biol 2021;66:125001.  DOI
               34.      Deng L, Chen B, Zhan C, et al. A novel clinical-radiomics model based on sarcopenia and radiomics for predicting the prognosis of
                   intrahepatic cholangiocarcinoma after radical hepatectomy. Front Oncol 2021;11:744311.  DOI  PubMed  PMC
               35.      Peng YT, Zhou CY, Lin P, et al. Preoperative ultrasound radiomics signatures for noninvasive evaluation of biological characteristics
                   of intrahepatic cholangiocarcinoma. Acad Radiol 2020;27:785-97.  DOI
               36.      Liang W, Xu L, Yang P, et al. Novel nomogram for preoperative prediction of early recurrence in intrahepatic cholangiocarcinoma.
                   Front Oncol 2018;8:360.  DOI  PubMed  PMC
               37.      King MJ, Hectors S, Lee KM, et al. Outcomes assessment in intrahepatic cholangiocarcinoma using qualitative and quantitative
                   imaging features. Cancer Imaging 2020;20:43.  DOI  PubMed  PMC
               38.      Park HJ, Park B, Park SY, et al. Preoperative prediction of postsurgical outcomes in mass-forming intrahepatic cholangiocarcinoma
                   based on clinical, radiologic, and radiomics features. Eur Radiol 2021;31:8638-48.  DOI
               39.      Chu H, Liu Z, Liang W, et al. Radiomics using CT images for preoperative prediction of futile resection in intrahepatic
                   cholangiocarcinoma. Eur Radiol 2021;31:2368-76.  DOI
               40.      Qin H, Hu X, Zhang J, et al. Machine-learning radiomics to predict early recurrence in perihilar cholangiocarcinoma after curative
   37   38   39   40   41   42   43   44   45   46   47