Page 202 - Read Online
P. 202
Pan et al. Hepatoma Res 2024;10:3 https://dx.doi.org/10.20517/2394-5079.2023.44 Page 11 of 13
8. Mavros MN, Economopoulos KP, Alexiou VG, Pawlik TM. Treatment and prognosis for patients with intrahepatic
cholangiocarcinoma: systematic review and meta-analysis. JAMA Surg 2014;149:565-74. DOI PubMed
9. Bertuccio P, Malvezzi M, Carioli G, et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J Hepatol
2019;71:104-14. DOI
10. Woods E, Le D, Jakka BK, Manne A. Changing landscape of systemic therapy in biliary tract cancer. Cancers 2022;14:2137. DOI
PubMed PMC
11. Moris D, Palta M, Kim C, Allen PJ, Morse MA, Lidsky ME. Advances in the treatment of intrahepatic cholangiocarcinoma: an
overview of the current and future therapeutic landscape for clinicians. CA Cancer J Clin 2023;73:198-222. DOI PubMed
12. Valle J, Wasan H, Palmer DH, et al; ABC-02 Trial Investigators. Cisplatin plus gemcitabine versus gemcitabine for biliary tract
cancer. N Engl J Med 2010;362:1273-81. DOI
13. Vogel A, Chen L, He AR, et al. Regional subgroup analysis of the phase 3 TOPAZ-1 study of durvalumab (D) plus gemcitabine and
cisplatin (GC) in advanced biliary tract cancer (BTC). JCO 2022;40:4075. DOI
14. Oh D, He AR, Qin S, et al. A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with
gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1. JCO 2022;40:378. DOI
15. Sia D, Tovar V, Moeini A, Llovet JM. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene
2013;32:4861-70. DOI PubMed PMC
16. Saha SK, Gordan JD, Kleinstiver BP, et al. Isocitrate dehydrogenase mutations confer dasatinib hypersensitivity and SRC dependence
in intrahepatic cholangiocarcinoma. Cancer Discov 2016;6:727-39. DOI PubMed PMC
17. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of
cholangiocarcinoma. Cancer Discov 2017;7:1116-35. DOI PubMed PMC
18. Desjonqueres E, Campani C, Marra F, Zucman-Rossi J, Nault JC. Preneoplastic lesions in the liver: molecular insights and relevance
for clinical practice. Liver Int 2022;42:492-506. DOI PubMed
19. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014;30:418-
26. DOI PubMed
20. De Luca A, Esposito Abate R, Rachiglio AM, et al. FGFR fusions in cancer: from diagnostic approaches to therapeutic intervention.
Int J Mol Sci 2020;21:6856. DOI PubMed PMC
21. Vogel A, Segatto O, Stenzinger A, Saborowski A. FGFR2 inhibition in cholangiocarcinoma. Annu Rev Med 2023;74:293-306. DOI
PubMed
22. Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy):
a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2020;21:796-807. DOI PubMed PMC
23. Lowery MA, Burris HA 3rd, Janku F, et al. Safety and activity of ivosidenib in patients with IDH1-mutant advanced
cholangiocarcinoma: a phase 1 study. Lancet Gastroenterol Hepatol 2019;4:711-20. DOI PubMed PMC
24. Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a
multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021;22:1290-300. DOI
25. Harding J, Cleary J, Shapiro G, et al. Treating HER2-mutant advanced biliary tract cancer with neratinib: benefits of HER2-directed
targeted therapy in the phase 2 SUMMIT ‘basket’ trial. Ann Oncol 2019;30:iv127. DOI
26. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer 2017;17:318-32. DOI
PubMed
27. Uson Junior PLS, Borad MJ. Precision approaches for cholangiocarcinoma: progress in clinical trials and beyond. Expert Opin Investig
Drugs 2022;31:125-31. DOI PubMed
28. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma:
a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671-84. DOI PubMed PMC
29. Shi GM, Huang XY, Wen TF, et al. Pemigatinib in previously treated Chinese patients with locally advanced or metastatic
cholangiocarcinoma carrying FGFR2 fusions or rearrangements: a phase II study. Cancer Med 2023;12:4137-46. DOI
30. Bekaii-Saab TS, Valle JW, Van Cutsem E, et al. FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced
cholangiocarcinoma with FGFR2 rearrangements. Future Oncol 2020;16:2385-99. DOI
31. Javle M, Lowery M, Shroff RT, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin
Oncol 2018;36:276-82. DOI PubMed PMC
32. Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic
cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study.
Lancet Gastroenterol 2021;6:803-15. DOI
33. Makawita S, K Abou Alfa G, Roychowdhury S, et al. Infigratinib in patients with advanced cholangiocarcinoma with FGFR2 gene
fusions/translocations: the PROOF 301 trial. Future Oncol 2020;16:2375-84. DOI PubMed
34. Bahleda R, Meric-Bernstam F, Goyal L, et al. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1-4
inhibitor in patients with advanced solid tumors. Ann Oncol 2020;31:1405-12. DOI PubMed PMC
35. Goyal L, Meric-Bernstam F, Hollebecque A, et al. Updated results of the FOENIX-CCA2 trial: efficacy and safety of futibatinib in
intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 fusions/rearrangements. J Clin Oncol 2022;40:4009. DOI
36. Borad MJ, Bridgewater JA, Morizane C, et al. A phase III study of futibatinib (TAS-120) versus gemcitabine-cisplatin (gem-cis)
chemotherapy as first-line (1L) treatment for patients (pts) with advanced (adv) cholangiocarcinoma (CCA) harboring fibroblast