Page 191 - Read Online
P. 191
Page 20 of 20 Gim et al. Hepatoma Res 2023;9:51 https://dx.doi.org/10.20517/2394-5079.2023.90
100. Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-
programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation
sequencing. J Clin Oncol 2018;36:633-41. DOI PubMed PMC
101. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69-74. DOI PubMed
102. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. Available from: https://www.fda.gov/drugs/drug-
approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors [Last accessed on 26 Jan 2024].
103. Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid
tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study.
Lancet Oncol 2020;21:1353-65. DOI
104. Schenker M, Burotto M, Richardet M, et al. Abstract CT022: CheckMate 848: A randomized, open-label, phase 2 study of nivolumab
in combination with ipilimumab or nivolumab monotherapy in patients with advanced or metastatic solid tumors of high tumor
mutational burden. Cancer Research 2022;82:CT022. DOI
105. Li K, Luo H, Huang L, Luo H, Zhu X. Microsatellite instability: a review of what the oncologist should know. Cancer Cell Int
2020;20:16. DOI PubMed PMC
106. FDA Converts to Full Approval Indication for KEYTRUDA® (pembrolizumab) for Certain Adult and Pediatric Patients With
Advanced Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient (dMMR) Solid Tumors. Available from: https://
www.merck.com/news/fda-converts-to-full-approval-indication-for-keytruda-pembrolizumab-for-certain-adult-and-pediatric-patients-
with-advanced-microsatellite-instability-high-msi-h-or-mismatch-repair-deficient/ [Last accessed on 25 Dec 2023].
107. Andre T, Berton D, Curigliano G, et al. Safety and efficacy of anti–PD-1 antibody dostarlimab in patients (pts) with mismatch repair-
deficient (dMMR) solid cancers: Results from GARNET study. JCO 2021;39:9. DOI
108. FDA grants accelerated approval to dostarlimab-gxly for dMMR advanced solid tumors. Available from: https://www.fda.gov/drugs/
resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors [Last
accessed on 25 Dec 2023].
109. Sangsuwannukul T, Supimon K, Sujjitjoon J, et al. Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells
targeting CD133 against cholangiocarcinoma cells. Int Immunopharmacol 2020;89:107069. DOI
110. Feng KC, Guo YL, Liu Y, et al. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T
cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 2017;10:4. DOI PubMed PMC
111. Guo Y, Feng K, Liu Y, et al. Phase I study of chimeric antigen receptor-modified T Cells in patients with EGFR-positive advanced
biliary tract cancers. Clin Cancer Res 2018;24:1277-86. DOI PubMed
112. Hassan R, Butler MO, Oh DY, et al. Phase 1 trial of gavocabtagene autoleucel (gavo-cel, TC-210) in patients (pts) with treatment
refractory mesothelioma and other mesothelin-expressing solid tumors. JCO 2023;41:8537-8537. DOI
113. Morash M, Mitchell H, Beltran H, Elemento O, Pathak J. The role of next-generation sequencing in precision medicine: a review of
outcomes in oncology. J Pers Med 2018;8:30. DOI
114. Ramón Y Cajal S, Sesé M, Capdevila C, et al. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol
Med 2020;98:161-77. DOI PubMed PMC
115. Wu P, Gao W, Su M, et al. Adaptive mechanisms of tumor therapy resistance driven by tumor microenvironment. Front Cell Dev
Biol 2021;9:641469. DOI PubMed PMC
116. Nong S, Han X, Xiang Y, et al. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm 2023;4:e218. DOI
PubMed PMC
117. Sabnis AJ, Bivona TG. Principles of resistance to targeted cancer therapy: lessons from basic and translational cancer biology. Trends
Mol Med 2019;25:185-97. DOI PubMed PMC
118. Carpizo DR, D'Angelica M. Management and extent of resection for intrahepatic cholangiocarcinoma. Surg Oncol Clin N Am
2009;18:289-305, viii. DOI PubMed
119. Buettner S, Koerkamp BG, Ejaz A, et al. The effect of preoperative chemotherapy treatment in surgically treated intrahepatic
cholangiocarcinoma patients-a multi-institutional analysis. J Surg Oncol 2017;115:312-8. DOI PubMed
120. Mason MC, Massarweh NN, Tzeng CD, et al. Time to rethink upfront surgery for resectable intrahepatic cholangiocarcinoma?
Implications from the neoadjuvant experience. Ann Surg Oncol 2021;28:6725-35. DOI
121. Utuama O, Permuth JB, Dagne G, et al. Neoadjuvant chemotherapy for intrahepatic cholangiocarcinoma: a propensity score survival
analysis supporting use in patients with high-risk disease. Ann Surg Oncol 2021;28:1939-49. DOI
122. Sutton TL, Billingsley KG, Walker BS, et al. Neoadjuvant chemotherapy is associated with improved survival in patients undergoing
hepatic resection for intrahepatic cholangiocarcinoma. Am J Surg 2021;221:1182-7. DOI
123. Preoperative nab-paclitaxel, cisplatin, and gemcitabine chemotherapy with or without infigratinib targeted therapy for the treatment
of resectable intrahepatic cholangiocarcinoma, the OPTIC trial. Available from: https://clinicaltrials.gov/study/NCT05514912?cond=
targeted%20neoadjuvant%20cholangiocarcinoma&rank=1 [Last accessed on 25 Dec 2023].