Page 169 - Read Online
P. 169

Yang et al. Hepatoma Res 2023;9:48  https://dx.doi.org/10.20517/2394-5079.2023.68  Page 19 of 21

                    fusions, mutations or amplifications. Ann Oncol 2022;33:S567-8.  DOI
               33.       Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme
                    activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225-34.  DOI  PubMed  PMC
               34.       Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462:739-44.  DOI
                    PubMed  PMC
               35.       Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH
                    activity in glioblastoma. Acta Neuropathol 2010;119:487-94.  DOI  PubMed  PMC
               36.       Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021;18:645-61.
                    DOI
               37.       Yang Z, Jiang B, Wang Y, et al. 2-HG inhibits necroptosis by stimulating DNMT1-dependent hypermethylation of the RIP3
                    promoter. Cell Rep 2017;19:1846-57.  DOI
               38.       Fujiwara H, Tateishi K, Misumi K, et al. Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-
                    induced aerobic glycolysis and AMPK activation. Sci Rep 2019;9:18859.  DOI  PubMed  PMC
               39.       Wu MJ, Shi L, Dubrot J, et al. Mutant IDH Inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in
                    cholangiocarcinoma. Cancer Discov 2022;12:812-35.  DOI  PubMed  PMC
               40.       Chen X, Yang P, Qiao Y, et al. Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate
                    dehydrogenase 2. Sci Rep 2022;12:18830.  DOI  PubMed  PMC
               41.       Wintheiser G, Zemla T, Shi Q, et al. Isocitrate dehydrogenase-mutated cholangiocarcinoma: natural history and clinical outcomes.
                    JCO Precis Oncol 2022;6:e2100156.  DOI  PubMed
               42.       Wang J, Zhang ZG, Ding ZY, et al. IDH1 mutation correlates with a beneficial prognosis and suppresses tumor growth in IHCC. J
                    Surg Res 2018;231:116-25.  DOI
               43.       Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1
                    in intrahepatic cholangiocarcinomas. Nat Genet 2013;45:1470-3.  DOI  PubMed  PMC
               44.       Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas
                    and share hypermethylation targets with glioblastomas. Oncogene 2013;32:3091-100.  DOI  PubMed  PMC
               45.       Goyal L, Govindan A, Sheth RA, et al. Prognosis and clinicopathologic features of patients with advanced stage isocitrate
                    dehydrogenase (IDH) mutant and IDH wild-type intrahepatic cholangiocarcinoma. Oncologist 2015;20:1019-27.  DOI  PubMed
                    PMC
               46.       Jolissaint JS, Soares KC, Seier KP, et al. Intrahepatic cholangiocarcinoma with lymph node metastasis: treatment-related outcomes
                    and the role of tumor genomics in patient selection. Clin Cancer Res 2021;27:4101-8.  DOI  PubMed  PMC
               47.       Niger M, Nichetti F, Casadei-Gardini A, et al. Platinum sensitivity in patients with IDH1/2 mutated vs wild-type intrahepatic
                    cholangiocarcinoma: a propensity score-based study. Int J Cancer 2022;151:1310-20.  DOI  PubMed
               48.       Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy):
                    a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2020;21:796-807.  DOI  PubMed  PMC
               49.       Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol
                    2022;85:253-75.  DOI  PubMed
               50.       Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev
                    2016;35:575-88.  DOI  PubMed  PMC
               51.       Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer
                    2021;21:181-97.  DOI  PubMed
               52.       Treekitkarnmongkol W, Suthiphongchai T. High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and
                    proliferation through AKT/p70S6K. World J Gastroenterol 2010;16:4047-54.  DOI  PubMed  PMC
               53.       Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov
                    2023;22:101-26.  DOI  PubMed  PMC
               54.       Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a
                    multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021;22:1290-300.  DOI
               55.       Ohba A, Morizane C, Kawamoto Y, et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing
                    unresectable or recurrent biliary tract cancer (BTC): An investigator-initiated multicenter phase 2 study (HERB trial). JCO
                    2022;40:4006.  DOI
               56.       Harding JJ, Piha-Paul SA, Shah RH, et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract
                    cancers. Nat Commun 2023;14:630.  DOI  PubMed  PMC
               57.       Meric-Bernstam F, Beeram M, Hamilton E, et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or
                    metastatic  HER2-expressing  or  HER2-amplified  cancers:  a  phase  1,  dose-escalation  and  expansion  study.  Lancet  Oncol
                    2022;23:1558-70.  DOI  PubMed
               58.       Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K, Rapp UR. B-raf and a B-raf pseudogene are located on 7q in man.
                    Oncogene 1992;7:795-9.  PubMed
               59.       Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.  DOI  PubMed
               60.       Robertson S, Hyder O, Dodson R, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their
                    correlation with clinical outcome. Hum Pathol 2013;44:2768-73.  DOI  PubMed  PMC
   164   165   166   167   168   169   170   171   172   173   174