Page 169 - Read Online
P. 169
Yang et al. Hepatoma Res 2023;9:48 https://dx.doi.org/10.20517/2394-5079.2023.68 Page 19 of 21
fusions, mutations or amplifications. Ann Oncol 2022;33:S567-8. DOI
33. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme
activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225-34. DOI PubMed PMC
34. Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462:739-44. DOI
PubMed PMC
35. Bleeker FE, Atai NA, Lamba S, et al. The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH
activity in glioblastoma. Acta Neuropathol 2010;119:487-94. DOI PubMed PMC
36. Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021;18:645-61.
DOI
37. Yang Z, Jiang B, Wang Y, et al. 2-HG inhibits necroptosis by stimulating DNMT1-dependent hypermethylation of the RIP3
promoter. Cell Rep 2017;19:1846-57. DOI
38. Fujiwara H, Tateishi K, Misumi K, et al. Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-
induced aerobic glycolysis and AMPK activation. Sci Rep 2019;9:18859. DOI PubMed PMC
39. Wu MJ, Shi L, Dubrot J, et al. Mutant IDH Inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in
cholangiocarcinoma. Cancer Discov 2022;12:812-35. DOI PubMed PMC
40. Chen X, Yang P, Qiao Y, et al. Effects of cancer-associated point mutations on the structure, function, and stability of isocitrate
dehydrogenase 2. Sci Rep 2022;12:18830. DOI PubMed PMC
41. Wintheiser G, Zemla T, Shi Q, et al. Isocitrate dehydrogenase-mutated cholangiocarcinoma: natural history and clinical outcomes.
JCO Precis Oncol 2022;6:e2100156. DOI PubMed
42. Wang J, Zhang ZG, Ding ZY, et al. IDH1 mutation correlates with a beneficial prognosis and suppresses tumor growth in IHCC. J
Surg Res 2018;231:116-25. DOI
43. Jiao Y, Pawlik TM, Anders RA, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1
in intrahepatic cholangiocarcinomas. Nat Genet 2013;45:1470-3. DOI PubMed PMC
44. Wang P, Dong Q, Zhang C, et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas
and share hypermethylation targets with glioblastomas. Oncogene 2013;32:3091-100. DOI PubMed PMC
45. Goyal L, Govindan A, Sheth RA, et al. Prognosis and clinicopathologic features of patients with advanced stage isocitrate
dehydrogenase (IDH) mutant and IDH wild-type intrahepatic cholangiocarcinoma. Oncologist 2015;20:1019-27. DOI PubMed
PMC
46. Jolissaint JS, Soares KC, Seier KP, et al. Intrahepatic cholangiocarcinoma with lymph node metastasis: treatment-related outcomes
and the role of tumor genomics in patient selection. Clin Cancer Res 2021;27:4101-8. DOI PubMed PMC
47. Niger M, Nichetti F, Casadei-Gardini A, et al. Platinum sensitivity in patients with IDH1/2 mutated vs wild-type intrahepatic
cholangiocarcinoma: a propensity score-based study. Int J Cancer 2022;151:1310-20. DOI PubMed
48. Abou-Alfa GK, Macarulla T, Javle MM, et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy):
a multicentre, randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2020;21:796-807. DOI PubMed PMC
49. Levantini E, Maroni G, Del Re M, Tenen DG. EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol
2022;85:253-75. DOI PubMed
50. Hsu JL, Hung MC. The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer Metastasis Rev
2016;35:575-88. DOI PubMed PMC
51. Kumagai S, Koyama S, Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat Rev Cancer
2021;21:181-97. DOI PubMed
52. Treekitkarnmongkol W, Suthiphongchai T. High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and
proliferation through AKT/p70S6K. World J Gastroenterol 2010;16:4047-54. DOI PubMed PMC
53. Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov
2023;22:101-26. DOI PubMed PMC
54. Javle M, Borad MJ, Azad NS, et al. Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a
multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 2021;22:1290-300. DOI
55. Ohba A, Morizane C, Kawamoto Y, et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing
unresectable or recurrent biliary tract cancer (BTC): An investigator-initiated multicenter phase 2 study (HERB trial). JCO
2022;40:4006. DOI
56. Harding JJ, Piha-Paul SA, Shah RH, et al. Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract
cancers. Nat Commun 2023;14:630. DOI PubMed PMC
57. Meric-Bernstam F, Beeram M, Hamilton E, et al. Zanidatamab, a novel bispecific antibody, for the treatment of locally advanced or
metastatic HER2-expressing or HER2-amplified cancers: a phase 1, dose-escalation and expansion study. Lancet Oncol
2022;23:1558-70. DOI PubMed
58. Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K, Rapp UR. B-raf and a B-raf pseudogene are located on 7q in man.
Oncogene 1992;7:795-9. PubMed
59. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54. DOI PubMed
60. Robertson S, Hyder O, Dodson R, et al. The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their
correlation with clinical outcome. Hum Pathol 2013;44:2768-73. DOI PubMed PMC