Page 168 - Read Online
P. 168
Page 18 of 21 Yang et al. Hepatoma Res 2023;9:48 https://dx.doi.org/10.20517/2394-5079.2023.68
4. Bekaii-saab T, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann
Oncol 2021;32:1111-26. DOI PubMed
5. Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: ready for "prime time" in biliary tract cancer. J
Hepatol 2020;73:170-85. DOI PubMed
6. Hoy SM. Pemigatinib: first approval. Drugs 2020;80:923-9. DOI PubMed
7. Goyal L, Meric-Bernstam F, Hollebecque A, et al; FOENIX-CCA2 Study Investigators. Futibatinib for FGFR2-rearranged
intrahepatic cholangiocarcinoma. N Engl J Med 2023;388:228-39. DOI
8. Kendre G, Murugesan K, Brummer T, Segatto O, Saborowski A, Vogel A. Charting co-mutation patterns associated with actionable
drivers in intrahepatic cholangiocarcinoma. J Hepatol 2023;78:614-26. DOI PubMed
9. Verdaguer H, Saurí T, Acosta DA, et al. ESMO scale for clinical actionability of molecular targets driving targeted treatment in
patients with cholangiocarcinoma. Clin Cancer Res 2022;28:1662-71. DOI
10. Wang XY, Zhu WW, Wang Z, et al. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters
with distinct molecular features and therapeutic vulnerabilities. Theranostics 2022;12:260-76. DOI PubMed PMC
11. Carapeto F, Bozorgui B, Shroff RT, et al. The immunogenomic landscape of resected intrahepatic cholangiocarcinoma. Hepatology
2022;75:297-308. DOI PubMed PMC
12. Cleary JM, Raghavan S, Wu Q, et al. FGFR2 extracellular domain in-frame deletions are therapeutically targetable genomic
alterations that function as oncogenic drivers in cholangiocarcinoma. Cancer Discov 2021;11:2488-505. DOI
13. Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas:
potential targets for intervention. Clin Cancer Res 2018;24:4154-61. DOI PubMed PMC
14. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of
cholangiocarcinoma. Cancer Discov 2017;7:1116-35. DOI PubMed PMC
15. Verlingue L, Hollebecque A, Boige V, Ducreux M, Malka D, Ferté C. Matching genomic molecular aberrations with molecular
targeted agents: are biliary tract cancers an ideal playground? Eur J Cancer 2017;81:161-73. DOI PubMed
16. Weinberg BA, Xiu J, Lindberg MR, et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential
therapeutic targets. J Gastrointest Oncol 2019;10:652-62. DOI PubMed PMC
17. Zhang Y, Ma Z, Li C, et al. The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers.
Nat Commun 2022;13:3061. DOI PubMed PMC
18. Komuta M. Intrahepatic cholangiocarcinoma: tumour heterogeneity and its clinical relevance. Clin Mol Hepatol 2022;28:396-407.
DOI PubMed PMC
19. Song G, Shi Y, Meng L, et al. Publisher correction: single-cell transcriptomic analysis suggests two molecularly distinct subtypes of
intrahepatic cholangiocarcinoma. Nat Commun 2022;13:2848. DOI PubMed PMC
20. Dong L, Lu D, Chen R, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic
cholangiocarcinoma. Cancer Cell 2022;40:70-87.e15. DOI
21. Dentro SC, Leshchiner I, Haase K, et al; PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium.
Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021;184:2239-54.e39. DOI PubMed
PMC
22. Lin Y, Peng L, Dong L, et al. Geospatial immune heterogeneity reflects the diverse tumor-immune interactions in intrahepatic
cholangiocarcinoma. Cancer Discov 2022;12:2350-71. DOI PubMed
23. Xiang X, Liu Z, Zhang C, et al. IDH mutation subgroup status associates with intratumor heterogeneity and the tumor
microenvironment in intrahepatic cholangiocarcinoma. Adv Sci 2021;8:e2101230. DOI PubMed PMC
24. Lin J, Dai Y, Sang C, et al. Multimodule characterization of immune subgroups in intrahepatic cholangiocarcinoma reveals distinct
therapeutic vulnerabilities. J Immunother Cancer 2022;10:e004892. DOI PubMed PMC
25. Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical
targeting. Biochem Soc Trans 2018;46:1753-70. DOI PubMed PMC
26. Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics
2000;69:275-9. DOI PubMed
27. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-
generation sequencing. Clin Cancer Res 2016;22:259-67. DOI PubMed
28. Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic
cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671-84. DOI PubMed PMC
29. Shi GM, Huang XY, Wen TF, et al. Pemigatinib in previously treated Chinese patients with locally advanced or
metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: a phase II study. Cancer Med 2023;12:4137-46.
DOI PubMed PMC
30. NCCN. NCCN Guidelines. Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1517 [Last accessed
on 14 Nov 2023].
31. Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic
cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study.
Lancet Gastroenterol Hepatol 2021;6:803-15. DOI PubMed
32. Borad M, Javle M, Shaib W, et al. 59P Efficacy of derazantinib in intrahepatic cholangiocarcinoma (iCCA) patients with FGFR2