Page 168 - Read Online
P. 168

Page 18 of 21                Yang et al. Hepatoma Res 2023;9:48  https://dx.doi.org/10.20517/2394-5079.2023.68

               4.       Bekaii-saab T, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann
                    Oncol 2021;32:1111-26.  DOI  PubMed
               5.       Lamarca A, Barriuso J, McNamara MG, Valle JW. Molecular targeted therapies: ready for "prime time" in biliary tract cancer. J
                    Hepatol 2020;73:170-85.  DOI  PubMed
               6.       Hoy SM. Pemigatinib: first approval. Drugs 2020;80:923-9.  DOI  PubMed
               7.       Goyal L, Meric-Bernstam F, Hollebecque A, et al; FOENIX-CCA2 Study Investigators. Futibatinib for FGFR2-rearranged
                    intrahepatic cholangiocarcinoma. N Engl J Med 2023;388:228-39.  DOI
               8.       Kendre G, Murugesan K, Brummer T, Segatto O, Saborowski A, Vogel A. Charting co-mutation patterns associated with actionable
                    drivers in intrahepatic cholangiocarcinoma. J Hepatol 2023;78:614-26.  DOI  PubMed
               9.       Verdaguer H, Saurí T, Acosta DA, et al. ESMO scale for clinical actionability of molecular targets driving targeted treatment in
                    patients with cholangiocarcinoma. Clin Cancer Res 2022;28:1662-71.  DOI
               10.       Wang XY, Zhu WW, Wang Z, et al. Driver mutations of intrahepatic cholangiocarcinoma shape clinically relevant genomic clusters
                    with distinct molecular features and therapeutic vulnerabilities. Theranostics 2022;12:260-76.  DOI  PubMed  PMC
               11.       Carapeto F, Bozorgui B, Shroff RT, et al. The immunogenomic landscape of resected intrahepatic cholangiocarcinoma. Hepatology
                    2022;75:297-308.  DOI  PubMed  PMC
               12.       Cleary JM, Raghavan S, Wu Q, et al. FGFR2 extracellular domain in-frame deletions are therapeutically targetable genomic
                    alterations that function as oncogenic drivers in cholangiocarcinoma. Cancer Discov 2021;11:2488-505.  DOI
               13.       Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas:
                    potential targets for intervention. Clin Cancer Res 2018;24:4154-61.  DOI  PubMed  PMC
               14.       Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of
                    cholangiocarcinoma. Cancer Discov 2017;7:1116-35.  DOI  PubMed  PMC
               15.       Verlingue L, Hollebecque A, Boige V, Ducreux M, Malka D, Ferté C. Matching genomic molecular aberrations with molecular
                    targeted agents: are biliary tract cancers an ideal playground? Eur J Cancer 2017;81:161-73.  DOI  PubMed
               16.       Weinberg BA, Xiu J, Lindberg MR, et al. Molecular profiling of biliary cancers reveals distinct molecular alterations and potential
                    therapeutic targets. J Gastrointest Oncol 2019;10:652-62.  DOI  PubMed  PMC
               17.       Zhang Y, Ma Z, Li C, et al. The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers.
                    Nat Commun 2022;13:3061.  DOI  PubMed  PMC
               18.       Komuta M. Intrahepatic cholangiocarcinoma: tumour heterogeneity and its clinical relevance. Clin Mol Hepatol 2022;28:396-407.
                    DOI  PubMed  PMC
               19.       Song G, Shi Y, Meng L, et al. Publisher correction: single-cell transcriptomic analysis suggests two molecularly distinct subtypes of
                    intrahepatic cholangiocarcinoma. Nat Commun 2022;13:2848.  DOI  PubMed  PMC
               20.       Dong  L,  Lu  D,  Chen  R,  et  al.  Proteogenomic  characterization  identifies  clinically  relevant  subgroups  of  intrahepatic
                    cholangiocarcinoma. Cancer Cell 2022;40:70-87.e15.  DOI
               21.       Dentro SC, Leshchiner I, Haase K, et al; PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium.
                    Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021;184:2239-54.e39.  DOI  PubMed
                    PMC
               22.       Lin Y, Peng L, Dong L, et al. Geospatial immune heterogeneity reflects the diverse tumor-immune interactions in intrahepatic
                    cholangiocarcinoma. Cancer Discov 2022;12:2350-71.  DOI  PubMed
               23.       Xiang  X,  Liu  Z,  Zhang  C,  et  al.  IDH  mutation  subgroup  status  associates  with  intratumor  heterogeneity  and  the  tumor
                    microenvironment in intrahepatic cholangiocarcinoma. Adv Sci 2021;8:e2101230.  DOI  PubMed  PMC
               24.       Lin J, Dai Y, Sang C, et al. Multimodule characterization of immune subgroups in intrahepatic cholangiocarcinoma reveals distinct
                    therapeutic vulnerabilities. J Immunother Cancer 2022;10:e004892.  DOI  PubMed  PMC
               25.       Farrell B, Breeze AL. Structure, activation and dysregulation of fibroblast growth factor receptor kinases: perspectives for clinical
                    targeting. Biochem Soc Trans 2018;46:1753-70.  DOI  PubMed  PMC
               26.       Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. Genomics
                    2000;69:275-9.  DOI  PubMed
               27.       Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-
                    generation sequencing. Clin Cancer Res 2016;22:259-67.  DOI  PubMed
               28.       Abou-Alfa  GK,  Sahai  V,  Hollebecque  A,  et  al.  Pemigatinib  for  previously  treated,  locally  advanced  or  metastatic
                    cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 2020;21:671-84.  DOI  PubMed  PMC
               29.       Shi GM, Huang XY, Wen TF,  et  al.  Pemigatinib  in  previously  treated  Chinese  patients  with  locally  advanced  or
                    metastatic cholangiocarcinoma carrying FGFR2 fusions or rearrangements: a phase II study. Cancer Med 2023;12:4137-46.
                    DOI  PubMed PMC
               30.       NCCN. NCCN Guidelines. Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1517 [Last accessed
                    on 14 Nov 2023].
               31.       Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic
                    cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study.
                    Lancet Gastroenterol Hepatol 2021;6:803-15.  DOI  PubMed
               32.       Borad M, Javle M, Shaib W, et al. 59P Efficacy of derazantinib in intrahepatic cholangiocarcinoma (iCCA) patients with FGFR2
   163   164   165   166   167   168   169   170   171   172   173