Page 74 - Read Online
P. 74
Page 105 Rutter et al. Extracell Vesicles Circ Nucleic Acids 2023;4:90-106 https://dx.doi.org/10.20517/evcna.2023.04
70. Deventer SJ, Dunlock VE, van Spriel AB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017;45:741-50.
DOI PubMed
71. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different
human cancer types. J Extracell Vesicles 2013;2:20424. DOI PubMed PMC
72. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010;464:864-9. DOI
PubMed PMC
73. Lambou K, Tharreau D, Kohler A, et al. Fungi have three tetraspanin families with distinct functions. BMC Genomics 2008;9:63.
DOI PubMed PMC
74. Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for Candida albicans EVs
include claudin-like Sur7 family proteins. J Extracell Vesicles 2020;9:1750810. DOI PubMed PMC
75. Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol 2014;68:377-93. DOI
PubMed
76. Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal
Genet Biol 2002;36:1-21. DOI PubMed
77. Wang J, Tian L, Zhang DD, et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full
Virulence in Verticillium dahliae. Mol Plant Microbe Interact 2018;31:651-64. DOI PubMed
78. Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus
Magnaporthe oryzae. Nat Commun 2013;4:1996. DOI PubMed PMC
79. O'Mara SP, Broz K, Boenisch M, Zhong Z, Dong Y, Kistler HC. The Fusarium graminearum t-SNARE Sso2 Is Involved in Growth,
Defense, and DON Accumulation and Virulence. Mol Plant Microbe Interact 2020;33:888-901. DOI PubMed
80. Toledo Martins S, Szwarc P, Goldenberg S, Alves LR. Extracellular vesicles in fungi: composition and functions. Curr Top
Microbiol Immunol 2019;422:45-59. DOI PubMed
81. Bleackley MR, Dawson CS, Anderson MA. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics
2019;19:e1800232. DOI PubMed
82. Studt L, Tudzynski B. Gibberellins and the red pigments bikaverin and fusarubin. In: Martín J, García-estrada C, Zeilinger S, editors.
Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 209-38. DOI
83. Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci 2015;6:573. DOI PubMed PMC
84. Frandsen RJ, Rasmussen SA, Knudsen PB, et al. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-
deoxybostrycoidin-based melanin. Sci Rep 2016;6:26206. DOI PubMed PMC
85. Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl Microbiol Biotechnol 2010;87:21-9. DOI
PubMed
86. Zhao K, Bleackley M, Chisanga D, et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall
remodelling. Commun Biol 2019;2:305. DOI PubMed PMC
87. Tariqjaveed M, Mateen A, Wang S, et al. Versatile effectors of phytopathogenic fungi target host immunity. J Integr Plant Biol
2021;63:1856-73. DOI PubMed
88. Gijzen M, Nürnberger T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa.
Phytochemistry 2006;67:1800-7. DOI PubMed
89. Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range
necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2014;15:336. DOI PubMed PMC
90. Muraosa Y, Toyotome T, Yahiro M, Kamei K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the
human pathogenic fungus Aspergillus fumigatus. Sci Rep 2019;9:3345. DOI PubMed PMC
91. Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of extracellular vesicles: state-of-the-art. Front Immunol 2019;10:202.
DOI PubMed PMC
92. Hoen EN, Buermans HP, Waasdorp W, Stoorvogel A, Wauben MH, 't Hoen PA. Deep sequencing of RNA from immune cell-derived
vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids
Res 2012;40:9272-85. DOI PubMed PMC
93. Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep 2019;27:940-954.e6. DOI
PubMed PMC
94. Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease
biomarkers and therapeutic targets. Nat Cell Biol 2021;23:1240-54. DOI PubMed PMC
95. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA
2017;8:e1413. DOI PubMed PMC
96. Bitencourt TA, Pessoni AM, Oliveira BTM, Alves LR, Almeida F. The RNA content of fungal extracellular vesicles: at the “cutting-
edge” of pathophysiology regulation. Cells 2022;11:2184. DOI PubMed PMC
97. Lee HC, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi.
Mol Cell 2010;38:803-14. DOI PubMed PMC
98. Yang Q, Li L, Xue Z, et al. Transcription of the major Neurospora crassa microRNA-like small RNAs relies on RNA polymerase
III. PLoS Genet 2013;9:e1003227. DOI PubMed PMC
99. Zhou J, Fu Y, Xie J, et al. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-

