Page 74 - Read Online
P. 74

Page 105               Rutter et al. Extracell Vesicles Circ Nucleic Acids 2023;4:90-106  https://dx.doi.org/10.20517/evcna.2023.04

               70.       Deventer SJ, Dunlock VE, van Spriel AB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017;45:741-50.
                    DOI  PubMed
               71.       Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different
                    human cancer types. J Extracell Vesicles 2013;2:20424.  DOI  PubMed  PMC
               72.       Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010;464:864-9.  DOI
                    PubMed  PMC
               73.       Lambou K, Tharreau D, Kohler A, et al. Fungi have three tetraspanin families with distinct functions. BMC Genomics 2008;9:63.
                    DOI  PubMed  PMC
               74.       Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for Candida albicans EVs
                    include claudin-like Sur7 family proteins. J Extracell Vesicles 2020;9:1750810.  DOI  PubMed  PMC
               75.       Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol 2014;68:377-93.  DOI
                    PubMed
               76.       Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal
                    Genet Biol 2002;36:1-21.  DOI  PubMed
               77.       Wang J, Tian L, Zhang DD, et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full
                    Virulence in Verticillium dahliae. Mol Plant Microbe Interact 2018;31:651-64.  DOI  PubMed
               78.       Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus
                    Magnaporthe oryzae. Nat Commun 2013;4:1996.  DOI  PubMed  PMC
               79.       O'Mara SP, Broz K, Boenisch M, Zhong Z, Dong Y, Kistler HC. The Fusarium graminearum t-SNARE Sso2 Is Involved in Growth,
                    Defense, and DON Accumulation and Virulence. Mol Plant Microbe Interact 2020;33:888-901.  DOI  PubMed
               80.       Toledo Martins S, Szwarc P, Goldenberg S, Alves LR. Extracellular vesicles in fungi: composition and functions. Curr Top
                    Microbiol Immunol 2019;422:45-59.  DOI  PubMed
               81.       Bleackley MR, Dawson CS, Anderson MA. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics
                    2019;19:e1800232.  DOI  PubMed
               82.       Studt L, Tudzynski B. Gibberellins and the red pigments bikaverin and fusarubin. In: Martín J, García-estrada C, Zeilinger S, editors.
                    Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 209-38.  DOI
               83.       Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci 2015;6:573.  DOI  PubMed  PMC
               84.       Frandsen RJ, Rasmussen SA, Knudsen PB, et al. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-
                    deoxybostrycoidin-based melanin. Sci Rep 2016;6:26206.  DOI  PubMed  PMC
               85.       Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl Microbiol Biotechnol 2010;87:21-9.  DOI
                    PubMed
               86.       Zhao K, Bleackley M, Chisanga D, et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall
                    remodelling. Commun Biol 2019;2:305.  DOI  PubMed  PMC
               87.       Tariqjaveed M, Mateen A, Wang S, et al. Versatile effectors of phytopathogenic fungi target host immunity. J Integr Plant Biol
                    2021;63:1856-73.  DOI  PubMed
               88.       Gijzen M, Nürnberger T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa.
                    Phytochemistry 2006;67:1800-7.  DOI  PubMed
               89.       Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range
                    necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2014;15:336.  DOI  PubMed  PMC
               90.       Muraosa Y, Toyotome T, Yahiro M, Kamei K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the
                    human pathogenic fungus Aspergillus fumigatus. Sci Rep 2019;9:3345.  DOI  PubMed  PMC
               91.       Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of extracellular vesicles: state-of-the-art. Front Immunol 2019;10:202.
                    DOI  PubMed  PMC
               92.       Hoen EN, Buermans HP, Waasdorp W, Stoorvogel A, Wauben MH, 't Hoen PA. Deep sequencing of RNA from immune cell-derived
                    vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids
                    Res 2012;40:9272-85.  DOI  PubMed  PMC
               93.       Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep 2019;27:940-954.e6.  DOI
                    PubMed  PMC
               94.       Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease
                    biomarkers and therapeutic targets. Nat Cell Biol 2021;23:1240-54.  DOI  PubMed  PMC
               95.       Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA
                    2017;8:e1413.  DOI  PubMed  PMC
               96.       Bitencourt TA, Pessoni AM, Oliveira BTM, Alves LR, Almeida F. The RNA content of fungal extracellular vesicles: at the “cutting-
                    edge” of pathophysiology regulation. Cells 2022;11:2184.  DOI  PubMed  PMC
               97.       Lee HC, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi.
                    Mol Cell 2010;38:803-14.  DOI  PubMed  PMC
               98.       Yang Q, Li L, Xue Z, et al. Transcription of the major Neurospora crassa  microRNA-like small RNAs relies on RNA polymerase
                    III. PLoS Genet 2013;9:e1003227.  DOI  PubMed  PMC
               99.       Zhou J, Fu Y, Xie J, et al. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-
   69   70   71   72   73   74   75   76   77   78   79