Page 179 - Read Online
P. 179
Ribovski et al. Extracell Vesicles Circ Nucleic Acids 2023;4:283-305 https://dx.doi.org/10.20517/evcna.2023.26 Page 21
62. Pachane BC, Nunes ACC, Cataldi TR, et al. Small extracellular vesicles from hypoxic triple-negative breast cancer cells induce
oxygen-dependent cell invasion. Int J Mol Sci 2022;23:12646. DOI PubMed PMC
63. Gong C, Zhang X, Shi M, et al. Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery
and personalized therapy against their homologous tumor. Adv Sci 2021;8:2002787. DOI PubMed PMC
64. Cerezo-Magaña M, Christianson HC, van Kuppevelt TH, Forsberg-Nilsson K, Belting M. Hypoxic induction of exosome uptake
through proteoglycan-dependent endocytosis fuels the lipid droplet phenotype in glioma. Mol Cancer Res 2021;19:528-40. DOI
PubMed
65. Fukuta T, Nishikawa A, Kogure K. Low level electricity increases the secretion of extracellular vesicles from cultured cells. Biochem
Biophys Rep 2020;21:100713. DOI PubMed PMC
66. Hisey CL, Artuyants A, Guo G, et al. Investigating the consistency of extracellular vesicle production from breast cancer subtypes
using CELLine adherent bioreactors. J of Extracellular Bio 2022;1:e60. DOI
67. Sajidah ES, Lim K, Yamano T, et al. Spatiotemporal tracking of small extracellular vesicle nanotopology in response to
physicochemical stresses revealed by HS-AFM. J Extracell Vesicles 2022;11:e12275. DOI PubMed PMC
68. Morandi MI, Busko P, Ozer-Partuk E, et al. Extracellular vesicle fusion visualized by cryo-EM. PNAS Nexus 2022;1:pgac156. DOI
PubMed PMC
69. Yao Z, Qiao Y, Li X, et al. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral
activity. J Virol 2018;92:e01578-18. DOI PubMed PMC
70. Toribio V, Morales S, López-Martín S, Cardeñes B, Cabañas C, Yáñez-Mó M. Development of a quantitative method to measure EV
uptake. Sci Rep 2019;9:10522. DOI PubMed PMC
71. Ilahibaks NF, Ardisasmita AI, Xie S, et al. TOP-EVs: technology of protein delivery through extracellular vesicles is a versatile
platform for intracellular protein delivery. J Control Release 2023;355:579-92. DOI
72. Bui S, Dancourt J, Lavieu G. Virus-free method to control and enhance extracellular vesicle cargo loading and delivery. ACS Appl
Bio Mater 2023;6:1081-91. DOI PubMed PMC
73. Zhang C, Schekman R. Syncytin-mediated open-ended membrane tubular connections facilitate the intercellular transfer of cargos
including Cas9 protein. Elife 2023;12:e84391. DOI PubMed PMC
74. Uygur B, Melikov K, Arakelyan A, Margolis LB, Chernomordik LV. Syncytin 1 dependent horizontal transfer of marker genes from
retrovirally transduced cells. Sci Rep 2019;9:17637. DOI PubMed PMC
75. Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. J Extracell Vesicles 2021;10:e12171. DOI
PubMed PMC
76. Somiya M, Kuroda S. Real-time luminescence assay for cytoplasmic cargo delivery of extracellular vesicles. Anal Chem
2021;93:5612-20. DOI PubMed
77. Dennison SM, Greenfield N, Lenard J, Lentz BR. VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of
liposomes in a conformationally sensitive fashion. Biochemistry 2002;41:14925-34. DOI
78. Schnell U, Kuipers J, Giepmans BN. EpCAM proteolysis: new fragments with distinct functions? Biosci Rep 2013;33:e00030. DOI
PubMed PMC
79. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery
systems. Int J Nanomedicine 2012;7:1525-41. DOI PubMed PMC
80. Stratton BS, Warner JM, Wu Z, et al. Cholesterol increases the openness of SNARE-mediated flickering fusion pores. Biophys J
2016;110:1538-50. DOI PubMed PMC
81. Kreutzberger AJ, Kiessling V, Tamm LK. High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated
membrane fusion. Biophys J 2015;109:319-29. DOI PubMed PMC
82. Bonsergent E, Lavieu G. Content release of extracellular vesicles in a cell-free extract. FEBS Lett 2019;593:1983-92. DOI PubMed
83. Lu J, Pan Q, Rong L, He W, Liu SL, Liang C. The IFITM proteins inhibit HIV-1 infection. J Virol 2011;85:2126-37. DOI PubMed
PMC
84. Tartour K, Appourchaux R, Gaillard J, et al. IFITM proteins are incorporated onto HIV-1 virion particles and negatively imprint their
infectivity. Retrovirology 2014;11:103. DOI PubMed PMC
85. Weidner JM, Jiang D, Pan XB, Chang J, Block TM, Guo JT. Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit
vesicular stomatitis virus infection via distinct mechanisms. J Virol 2010;84:12646-57. DOI PubMed PMC
86. Buchrieser J, Degrelle SA, Couderc T, et al. IFITM proteins inhibit placental syncytiotrophoblast formation and promote fetal
demise. Science 2019;365:176-80. DOI
87. Perrin P, Janssen L, Janssen H, et al. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with
exosome release. Curr Biol 2021;31:3884-3893.e4. DOI PubMed PMC
88. Somiya M. Where does the cargo go?: solutions to provide experimental support for the "extracellular vesicle cargo transfer
hypothesis". J Cell Commun Signal 2020;14:135-46. DOI PubMed PMC
89. Gaudin Y. Reversibility in fusion protein conformational changes the intriguing case of rhabdovirus-induced membrane fusion.
Subcell Biochem ;34:379-408. DOI PubMed
90. Chernomordik LV, Kozlov MM. Mechanics of membrane fusion. Nat Struct Mol Biol 2008;15:675-83. DOI PubMed PMC
91. Fontana J, Steven AC. Influenza virus-mediated membrane fusion: structural insights from electron microscopy. Arch Biochem
Biophys 2015;581:86-97. DOI PubMed PMC

