Page 88 - Read Online
P. 88

Page 52 of 54                         Yang et al. Chem Synth 2023;3:7  https://dx.doi.org/10.20517/cs.2022.38

                    spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J Am Chem Soc 2010;132:15328-33.  DOI
                    PubMed
               73.       Chen WB, Wu ZJ, Hu J, Cun LF, Zhang XM, Yuan WC. Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato
                    oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters.
                    Org Lett 2011;13:2472-5.  DOI  PubMed
               74.       Lin Y, Liu L, Du D. Squaramide-catalyzed asymmetric Michael/cyclization cascade reaction of 3-isothiocyanato oxindoles with
                    chalcones for synthesis of pyrrolidinyl spirooxindoles. Org Chem Front 2017;4:1229-38.  DOI
               75.       Zhao H, Tian T, Pang H, et al. Organocatalytic [3+2] cycloadditions of barbiturate-based olefins with 3-isothiocyanato oxindoles:
                    highly diastereoselective and enantioselective synthesis of dispirobarbiturates. Adv Synth Catal 2016;358:2619-30.  DOI
               76.       Du D, Xu Q, Li XG, Shi M. Construction of spirocyclic oxindoles through regio- and stereoselective [3+2] or [3+2]/[4+2] cascade
                    reaction of α,β-unsaturated imines with 3-isothiocyanato oxindole. Chem Eur J 2016;22:4733-7.  DOI  PubMed
               77.       Wang L, Yang D, Li D, et al. Catalytic Asymmetric [3 + 2] cyclization reactions of 3-isothiocyanato oxindoles and alkynyl ketones
                    via an in situ generated magnesium catalyst. Org Lett 2015;17:4260-3.  DOI  PubMed
               78.       Kayal S, Mukherjee S. Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the
                    Enantioselective Synthesis of β-Amino-α-hydroxyphosphonates. Org Lett 2015;17:5508-11.  DOI  PubMed
               79.       Wang L, Yang D, Li D, Wang R. Catalytic enantioselective ring-opening and ring-closing reactions of 3-isothiocyanato oxindoles
                    and N-(2-Picolinoyl)aziridines. Org Lett 2015;17:3004-7.  DOI  PubMed
               80.       Jiang X, Wang Y, Zhang G, et al. Enantioselective synthesis of cyclic thioureas via mannich reaction and concise synthesis of highly
                    optically active methylthioimidazolines: discovery of a more potent antipyretic agent. Adv Synth Catal 2011;353:1787-96.  DOI
               81.       Liu RM, Zhang M, Han XX, et al. Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an
                    approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Org Biomol Chem 2022;20:5060-5.  DOI
                    PubMed
               82.       Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance. Eur J
                    Med Chem 2013;69:735-53.  DOI  PubMed
               83.       Chauhan P, Mahajan S, Enders D. Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one
                    derivatives. Chem Commun (Camb) 2015;51:12890-907.  DOI  PubMed
               84.       Kuo SC, Huang LJ, Nakamura H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of
                    3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J Med Chem 1984;27:539-44.  DOI  PubMed
               85.       Wilde F, Specker E, Neuenschwander M, Nazaré M, Bodtke A, Link A. Tractable synthesis of multipurpose screening compounds
                    with under-represented molecular features for an open access screening platform. Mol Divers 2014;18:483-95.  DOI  PubMed
               86.       Kakiuchi Y, Sasaki N, Satoh-Masuoka M, Murofushi H, Murakami-Murofushi K. A novel pyrazolone, 4,4-dichloro-1-(2,4-
                    dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase. Biochem Biophys Res Commun
                    2004;320:1351-8.  DOI
               87.       Liu S, Bao X, Wang B. Pyrazolone: a powerful synthon for asymmetric diverse derivatizations.  Chem Commun (Camb)
                    2018;54:11515-29.  DOI  PubMed
               88.       Wang L, Shi XM, Dong WP, Zhu LP, Wang R. Efficient construction of highly functionalized spiro[γ-butyrolactone-pyrrolidin-3,3’-
                    oxindole] tricyclic skeletons via an organocatalytic 1,3-dipolar cycloaddition. Chem Commun (Camb) 2013;49:3458-60.  DOI
                    PubMed
               89.       Chen N, Zhu L, Gan L, et al. Asymmetric synthesis of bispiro[γ-butyrolactone-pyrrolidin-4,4’-pyrazolone] scaffolds containing two
                    quaternary spirocenters via an organocatalytic 1,3-dipolar cycloaddition: asymmetric synthesis of bispiro[γ-butyrolactone-pyrrolidin-
                    4,4’-pyrazolone] scaffolds containing two quaternary spirocenters via an organocatalytic 1. Eur J Org Chem 2018;2018:2939-43.
                    DOI
               90.       Kowalczyk-Dworak D, Albrecht Ł. α,β-unsaturated butenolides in an organocatalytic doubly annulative cascade for the preparation
                    of 3,4-dihydrocoumarins. Org Biomol Chem 2019;17:2624-8.  DOI  PubMed
               91.       Guo D, Li Z, Han X, Zhang L, Zhang M, Liu X. Decarboxylative, diastereoselective and exo-selective 1,3-dipolar cycloaddition for
                    diversity-oriented construction of structural spiro[butyrolactone–pyrrolidine–chromanone] hybrids. Synlett 2021;32:1447-52.  DOI
               92.       Guo Y, Meng C, Liu X, et al. Successive waste as reagent: two more steps forward in a pinnick oxidation. Org Lett 2018;20:913-6.
                    DOI  PubMed
               93.       Mostinski Y, Lankri D, Tsvelikhovsky D. Transition-metal-catalyzed synthesis of spirolactones. Synthesis 2017;49:2361-73.  DOI
               94.       Hazra A, Paira P, Sahu KB, et al. Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-
                    oxindole adducts via one-pot three-component [3+2] azomethine ylide cycloaddition. Tetrahedron Lett 2010;51:1585-8.  DOI
               95.       Cui BD, Zuo J, Zhao JQ, et al. Tandem Michael addition-ring transformation reactions of 3-hydroxyoxindoles/3-aminooxindoles with
                    olefinic azlactones: direct access to structurally diverse spirocyclic oxindoles. J Org Chem 2014;79:5305-14.  DOI  PubMed
               96.       Chen L, Wu ZJ, Zhang ML, et al. Organocatalytic asymmetric michael/cyclization cascade reactions of 3-hydroxyoxindoles/3-
                    aminooxindoles with α,β-unsaturated acyl phosphonates for the construction of spirocyclic oxindole-γ-lactones/lactams. J Org Chem
                    2015;80:12668-75.  DOI  PubMed
               97.       Ma SS, Mei WL, Guo ZK, et al. Two new types of bisindole alkaloid from Trigonostemon lutescens. Org Lett 2013;15:1492-5.  DOI
                    PubMed
               98.       Yu B, Yu DQ, Liu HM. Spirooxindoles: promising scaffolds for anticancer agents. Eur J Med Chem 2015;97:673-98.  DOI  PubMed
   83   84   85   86   87   88   89   90   91   92   93