Page 106 - Read Online
P. 106

Liu et al. Chem Synth 2023;3:11  https://dx.doi.org/10.20517/cs.2022.46          Page 7 of 8

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Bandini M, Eichholzer A. Catalytic functionalization of indoles in a new dimension. Angew Chem Int Ed Engl 2009;48:9608-44.  DOI
                   PubMed
               2.       Kochanowska-Karamyan AJ, Hamann MT. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety.
                   Chem Rev 2010;110:4489-97.  DOI  PubMed
               3.       Wan Y, Li Y, Yan C, Yan M, Tang Z. Indole: a privileged scaffold for the design of anti-cancer agents. Eur J Med Chem
                   2019;183:111691-708.  DOI  PubMed
               4.       Maehr H, Smallheer J. Total syntheses of rivularins D  and D . J Am Chem Soc 1985;107:2943-5.  DOI
                                                          3
                                                      1
               5.       Zhang HH, Shi F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: strategies and applications.
                   Acc Chem Res 2022;55:2562-80.  DOI  PubMed
               6.       Anilkumar GN, Lesburg CA, Selyutin O, et al. I. Novel HCV NS5B polymerase inhibitors: discovery of indole 2-carboxylic acids with
                   C3-heterocycles. Bioorg Med Chem Lett 2011;21:5336-41.  DOI  PubMed
               7.       Luz JG, Carson MW, Condon B, et al. Indole glucocorticoid receptor antagonists active in a model of dyslipidemia act via a unique
                   association with an agonist binding site. J Med Chem 2015;58:6607-18.  DOI  PubMed
               8.       Sharma K, Baral ER, Akhtar MS, Lee YR, Kim SH, Wee YJ. 3-Naphthylindoles as new promising candidate antioxidant, antibacterial,
                   and antibiofilm agents. Res Chem Intermed 2017;43:2387-99.  DOI
               9.       Jiang F, Luo GZ, Zhu ZQ, Wang CS, Mei GJ, Shi F. Application of naphthylindole-derived phosphines as organocatalysts in[4 + 1]
                   cyclizations of o-quinone methides with Morita-Baylis-Hillman carbonates. J Org Chem 2018;83:10060-9.  DOI  PubMed
               10.      Li TZ, Liu SJ, Tan W, Shi F. Catalytic asymmetric construction of axially chiral indole-based frameworks: an emerging area. Chem
                   Eur J 2020;26:15779-92.  DOI  PubMed
               11.      Jiang F, Chen KW, Wu P, Zhang YC, Jiao Y, Shi F. A strategy for synthesizing axially chiral naphthyl-indoles: catalytic asymmetric
                   addition reactions of racemic substrates. Angew Chem Int Ed Engl 2019;58:15104-10.  DOI  PubMed
               12.      Sheng FT, Li ZM, Zhang YZ, et al. Atroposelective synthesis of 3,3’-bisindoles bearing axial and central chirality: using isatin-derived
                   imines as electrophiles. Chin J Chem 2020;38:583-9.  DOI
               13.      Chen KW, Wang ZS, Wu P, et al. Catalytic asymmetric synthesis of 3,3’-bisindoles bearing single axial chirality. J Org Chem
                   2020;85:10152-66.  DOI  PubMed
               14.      Qi LW, Mao JH, Zhang J, Tan B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat Chem 2018;10:58-64.
                   DOI  PubMed
               15.      Zhu S, Chen YH, Wang YB, et al. Organocatalytic atroposelective construction of axially chiral arylquinones. Nat Commun
                   2019;10:4268-77.  DOI  PubMed
               16.      Lu DL, Chen YH, Xiang SH, Yu P, Tan B, Li S. Atroposelective construction of arylindoles by chiral phosphoric acid-catalyzed cross-
                   coupling of indoles and quinones. Org Lett 2019;21:6000-4.  DOI  PubMed
               17.      Ding WY, Yu P, An QJ, et al. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene.
                   Chem 2020;6:2046-59.  DOI
               18.      Chen YH, Li HH, Zhang X, Xiang SH, Li S, Tan B. Organocatalytic enantioselective synthesis of atropisomeric aryl-. p ;59:11374-8.
                   DOI  PubMed
               19.      Zhang HH, Wang CS, Li C, Mei GJ, Li Y, Shi F. Design and enantioselective construction of axially chiral naphthyl-indole skeletons.
                   Angew Chem Int Ed Engl 2017;56:116-21.  DOI  PubMed
               20.      Bisag GD, Pecorari D, Mazzanti A, et al. Central-to-axial chirality conversion approach designed on organocatalytic enantioselective
                   povarov cycloadditions: First access to configurationally stable indole-quinoline atropisomers. Chem Eur J 2019;25:15694-701.  DOI
                   PubMed
               21.      He XL, Zhao HR, Song X, Jiang B, Du W, Chen YC. Asymmetric Barton-Zard reaction to access 3-pyrrole-containing axially chiral
                   skeletons. ACS Catal 2019;9:4374-81.  DOI
               22.      Lu S, Ong JY, Yang H, et al. Diastereo- and atroposelective synthesis of bridged biaryls bearing an eight-membered lactone through an
   101   102   103   104   105   106   107   108   109   110   111