Page 37 - Read Online
P. 37

Page 14                    Conroy et al. Cancer Drug Resist 2021;4:543-58  https://dx.doi.org/10.20517/cdr.2021.07

               22.      Wong NS, Meadows KL, Rosen LS, et al. A phase I multicenter study of continuous oral administration of lonafarnib (SCH 66336)
                   and intravenous gemcitabine in patients with advanced cancer. Cancer Invest 2011;29:617-25.  DOI  PubMed  PMC
               23.      Milojkovic Kerklaan B, Diéras V, Le Tourneau C, et al. Phase I study of lonafarnib (SCH66336) in combination with trastuzumab plus
                   paclitaxel in Her2/neu overexpressing breast cancer: EORTC study 16023. Cancer Chemother Pharmacol 2013;71:53-62.  DOI
                   PubMed
               24.      Lobell RB, Omer CA, Abrams MT, et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor
                   combinations in preclinical models. Cancer Res 2001;61:8758-68.  PubMed
               25.      Whyte DB, Kirschmeier P, Hockenberry TN, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein
                   transferase inhibitors. J Biol Chem 1997;272:14459-64.  DOI  PubMed
               26.      Gilardi M, Wang Z, Proietto M, et al. Tipifarnib as a Precision Therapy for. HRAS ;19:1784-96.  DOI  PubMed  PMC
               27.      Furuse  J,  Kurata  T,  Okano  N,  et  al.  An  early  clinical  trial  of  Salirasib,  an  oral  RAS  inhibitor,  in  Japanese  patients  with
                   relapsed/refractory solid tumors. Cancer Chemother Pharmacol 2018;82:511-9.  DOI  PubMed  PMC
               28.      Marín-Ramos NI, Ortega-Gutiérrez S, López-Rodríguez ML. Blocking Ras inhibition as an antitumor strategy. Semin Cancer Biol
                   2019;54:91-100.  DOI  PubMed
               29.      Santra T, Herrero A, Rodriguez J, et al. An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Rep
                   2019;26:3100-3115.e7.  DOI  PubMed
               30.      Prior IA, Hancock JF. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 2012;23:145-53.  DOI
                   PubMed  PMC
               31.      Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing.  Cold Spring Harb Perspect Biol
                   2013;5:a009043.  DOI  PubMed  PMC
               32.      Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J
                   Med 2008;359:1757-65.  DOI  PubMed
               33.      Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal
                   cancer. J Clin Oncol 2008;26:1626-34.  DOI  PubMed
               34.      Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the
                   response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007;67:2643-8.
                   DOI  PubMed
               35.      Mao C, Qiu LX, Liao RY, et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a
                   meta-analysis of 22 studies. Lung Cancer 2010;69:272-8.  DOI  PubMed
               36.      Moll HP, Pranz K, Musteanu M, et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci Transl Med 2018;10:eaao2301.  DOI
                   PubMed
               37.      Kruspig B, Monteverde T, Neidler S, et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci Transl Med
                   2018;10:eaao2565.  DOI  PubMed  PMC
               38.      Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011;2:261-74.
                   DOI  PubMed  PMC
               39.      Binimetinib, and Cetuximab in. BRAF ;382:876-8.  DOI  PubMed
               40.      Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant
                   metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016;17:984-93.  DOI  PubMed
               41.      Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug
                   resistance. Curr Opin Struct Biol 2016;41:151-8.  DOI  PubMed
               42.      Jambrina PG, Rauch N, Pilkington R, et al. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate
                   Transactivation. Angew Chem Int Ed Engl 2016;55:983-6.  DOI  PubMed  PMC
               43.      Rukhlenko OS, Khorsand F, Krstic A, et al. Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to
                   Overcome Oncogenic RAS Signaling. Cell Syst 2018;7:161-179.e14.  DOI  PubMed  PMC
               44.      Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.
                   Nature 2010;464:431-5.  DOI  PubMed
               45.      Peng SB, Henry JR, Kaufman MD, et al. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor
                   Activities in RAS or BRAF Mutant Cancers. Cancer Cell 2015;28:384-98.  DOI  PubMed
               46.      Nakamura A, Arita T, Tsuchiya S, et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant
                   melanoma. Cancer Res 2013;73:7043-55.  DOI  PubMed
               47.      Robert C, Grob JJ, Stroyakovskiy D, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J
                   Med 2019;381:626-36.  DOI  PubMed
               48.      Hatzivassiliou G, Haling JR, Chen H, et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven
                   cancers. Nature 2013;501:232-6.  DOI  PubMed
               49.      Bodoky G, Timcheva C, Spigel DR, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib
                   (AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line
                   gemcitabine therapy. Invest New Drugs 2012;30:1216-23.  DOI  PubMed
               50.      Bennouna J, Lang I, Valladares-Ayerbes M, et al. A Phase II, open-label, randomised study to assess the efficacy and safety of the
                   MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one
                   or two prior chemotherapeutic regimens. Invest New Drugs 2011;29:1021-8.  DOI  PubMed
               51.      Hainsworth JD, Cebotaru CL, Kanarev V, et al. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244
   32   33   34   35   36   37   38   39   40   41   42