Page 37 - Read Online
P. 37
Page 14 Conroy et al. Cancer Drug Resist 2021;4:543-58 https://dx.doi.org/10.20517/cdr.2021.07
22. Wong NS, Meadows KL, Rosen LS, et al. A phase I multicenter study of continuous oral administration of lonafarnib (SCH 66336)
and intravenous gemcitabine in patients with advanced cancer. Cancer Invest 2011;29:617-25. DOI PubMed PMC
23. Milojkovic Kerklaan B, Diéras V, Le Tourneau C, et al. Phase I study of lonafarnib (SCH66336) in combination with trastuzumab plus
paclitaxel in Her2/neu overexpressing breast cancer: EORTC study 16023. Cancer Chemother Pharmacol 2013;71:53-62. DOI
PubMed
24. Lobell RB, Omer CA, Abrams MT, et al. Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor
combinations in preclinical models. Cancer Res 2001;61:8758-68. PubMed
25. Whyte DB, Kirschmeier P, Hockenberry TN, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein
transferase inhibitors. J Biol Chem 1997;272:14459-64. DOI PubMed
26. Gilardi M, Wang Z, Proietto M, et al. Tipifarnib as a Precision Therapy for. HRAS ;19:1784-96. DOI PubMed PMC
27. Furuse J, Kurata T, Okano N, et al. An early clinical trial of Salirasib, an oral RAS inhibitor, in Japanese patients with
relapsed/refractory solid tumors. Cancer Chemother Pharmacol 2018;82:511-9. DOI PubMed PMC
28. Marín-Ramos NI, Ortega-Gutiérrez S, López-Rodríguez ML. Blocking Ras inhibition as an antitumor strategy. Semin Cancer Biol
2019;54:91-100. DOI PubMed
29. Santra T, Herrero A, Rodriguez J, et al. An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Rep
2019;26:3100-3115.e7. DOI PubMed
30. Prior IA, Hancock JF. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol 2012;23:145-53. DOI
PubMed PMC
31. Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol
2013;5:a009043. DOI PubMed PMC
32. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J
Med 2008;359:1757-65. DOI PubMed
33. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal
cancer. J Clin Oncol 2008;26:1626-34. DOI PubMed
34. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the
response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res 2007;67:2643-8.
DOI PubMed
35. Mao C, Qiu LX, Liao RY, et al. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: a
meta-analysis of 22 studies. Lung Cancer 2010;69:272-8. DOI PubMed
36. Moll HP, Pranz K, Musteanu M, et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci Transl Med 2018;10:eaao2301. DOI
PubMed
37. Kruspig B, Monteverde T, Neidler S, et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci Transl Med
2018;10:eaao2565. DOI PubMed PMC
38. Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2011;2:261-74.
DOI PubMed PMC
39. Binimetinib, and Cetuximab in. BRAF ;382:876-8. DOI PubMed
40. Planchard D, Besse B, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant
metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 2016;17:984-93. DOI PubMed
41. Rauch N, Rukhlenko OS, Kolch W, Kholodenko BN. MAPK kinase signalling dynamics regulate cell fate decisions and drug
resistance. Curr Opin Struct Biol 2016;41:151-8. DOI PubMed
42. Jambrina PG, Rauch N, Pilkington R, et al. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate
Transactivation. Angew Chem Int Ed Engl 2016;55:983-6. DOI PubMed PMC
43. Rukhlenko OS, Khorsand F, Krstic A, et al. Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to
Overcome Oncogenic RAS Signaling. Cell Syst 2018;7:161-179.e14. DOI PubMed PMC
44. Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth.
Nature 2010;464:431-5. DOI PubMed
45. Peng SB, Henry JR, Kaufman MD, et al. Inhibition of RAF Isoforms and Active Dimers by LY3009120 Leads to Anti-tumor
Activities in RAS or BRAF Mutant Cancers. Cancer Cell 2015;28:384-98. DOI PubMed
46. Nakamura A, Arita T, Tsuchiya S, et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant
melanoma. Cancer Res 2013;73:7043-55. DOI PubMed
47. Robert C, Grob JJ, Stroyakovskiy D, et al. Five-Year Outcomes with Dabrafenib plus Trametinib in Metastatic Melanoma. N Engl J
Med 2019;381:626-36. DOI PubMed
48. Hatzivassiliou G, Haling JR, Chen H, et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven
cancers. Nature 2013;501:232-6. DOI PubMed
49. Bodoky G, Timcheva C, Spigel DR, et al. A phase II open-label randomized study to assess the efficacy and safety of selumetinib
(AZD6244 [ARRY-142886]) versus capecitabine in patients with advanced or metastatic pancreatic cancer who have failed first-line
gemcitabine therapy. Invest New Drugs 2012;30:1216-23. DOI PubMed
50. Bennouna J, Lang I, Valladares-Ayerbes M, et al. A Phase II, open-label, randomised study to assess the efficacy and safety of the
MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one
or two prior chemotherapeutic regimens. Invest New Drugs 2011;29:1021-8. DOI PubMed
51. Hainsworth JD, Cebotaru CL, Kanarev V, et al. A phase II, open-label, randomized study to assess the efficacy and safety of AZD6244