Page 62 - Read Online
P. 62
Page 240 Crisafulli et al. Cancer Drug Resist 2019;2:225-41 I http://dx.doi.org/10.20517/cdr.2018.008
pharmacogenomics. Mol Biosyst 2016;12:1818-30.
62. Garraway LA. Genomics-driven oncology: framework for an emerging paradigm. J Clin Oncol 2013;31:1806-14.
63. Dong L, Wang W, Li A, Kansal R, Chen Y, et al. Clinical next generation sequencing for precision medicine in cancer. Curr Genomics
2015;16:253-63.
64. Filipski KK, Mechanic LE, Long R, Freedman AN. Pharmacogenomics in oncology care. Front Genet 2014;5:73.
65. Caudle KE, Klein TE, Hoffman JM, Muller DJ, Whirl-Carrillo M, et al. Incorporation of pharmacogenomics into routine clinical
practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab
2014;15:209-17.
66. Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui CH, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC)
guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin Pharmacol Ther 2018. Available from:
https://ascpt.onlinelibrary.wiley.com/doi/full/10.1002/cpt.1304. [Last accessed on 9 Apr 2019]
67. Luzum JA, Pakyz RE, Elsey AR, Haidar CE, Peterson JF, et al. The pharmacogenomics research network translational pharmacogenetics
program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin Pharmacol Ther
2017;102:502-10.
68. Romani A, Guerra M, Trerotola M, Alberti S. Detection and analysis of spliced chimeric mRNAs in sequence databanks. Nucleic Acids
Res 2003;31:1-8.
69. Plebani R, Oliver GR, Trerotola M, Guerra E, Cantanelli P, et al. Long-range transcriptome sequencing reveals cancer cell growth
regulatory chimeric mRNA. Neoplasia 2012;14:1087-96.
70. Alberti S, Herzenberg LA. DNA methylation prevents transfection of genes for specific surface antigens. Proc Natl Acad Sci USA
1988;85:8391-4.
71. Alberti S, Nutini M, Herzenberg LA. DNA methylation prevents the amplification of TROP1, a tumor associated cell surface antigen
gene. Proc Natl Acad Sci USA 1994;91:5833-7.
72. Nevedomskaya E, Wessels L, Zwart W. Genome-wide epigenetic profiling of breast cancer tumors treated with aromatase inhibitors.
Genom Data 2014;2:195-8.
73. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. Genome sequencing in microfabricated high-density picolitre reactors.
Nature 2005;437:376-80.
74. Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009;55:641-58.
75. Kchouk M, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Biol Med 2017;9:8.
76. Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the
study and control of bacterial infections. Clin Microbiol Infect 2018;24:335-41.
77. Norris AL, Workman RE, Fan Y, Eshleman JR, Timp W. Nanopore sequencing detects structural variants in cancer. Cancer Biol Ther
2016;17:246-53.
78. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S. A review on the applications of next generation sequencing technologies as applied to
food-related microbiome studies. Front Microbiol 2017;8:1829.
79. Simeone P, Alberti S. RE: HABP2 G534E mutation in familial nonmedullary thyroid cancer. J Natl Cancer Inst 2016;108.
80. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature 2018;553:446-54.
81. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, et al. ACMG clinical laboratory standards for next-generation sequencing.
Genet Med 2013;15:733-47.
82. Dubbink HJ, Deans ZC, Tops BB, van Kemenade FJ, Koljenovic S, et al. Next generation diagnostic molecular pathology: critical
appraisal of quality assurance in Europe. Mol Oncol 2014;8:830-9.
83. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, et al. Standards and guidelines for the interpretation and reporting of
sequence variants in cancer: a joint consensus recommendation of the association for molecular pathology, American society of clinical
oncology, and College of American pathologists. J Mol Diagn 2017;19:4-23.
84. Schwarz UI, Gulilat M, Kim RB. The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. Cold Spring
Harb Perspect Med 2019. Epub ahead of print [PMID: 29844222 DOI: 10.1101/cshperspect.a033027]
85. Chennagiri N, White EJ, Frieden A, Lopez E, Lieber DS, et al. Orthogonal NGS for high throughput clinical diagnostics. Sci Rep
2016;6:24650.
86. Nasr AF, Nutini M, Palombo B, Guerra E, Alberti S. Mutations ofTP53 induce loss of DNA methylation and amplification of the
TROP1 gene. Oncogene 2003;22:1668-77.
87. Li Y, Melnikov AA, Levenson V, Guerra E, Simeone P, et al. A seven-gene CpG-island methylation panel predicts breast cancer
progression. BMC Cancer 2015;15:417.
88. Lauschke VM, Ingelman-Sundberg M. Requirements for comprehensive pharmacogenetic genotyping platforms. Pharmacogenomics
2016;17:917-24.
89. Mandelker D, Schmidt RJ, Ankala A, McDonald Gibson K, Bowser M, et al. Navigating highly homologous genes in a molecular
diagnostic setting: a resource for clinical next-generation sequencing. Genet Med 2016;18:1282-9.
90. Rasmussen-Torvik LJ, Stallings SC, Gordon AS, Almoguera B, Basford MA, et al. Design and anticipated outcomes of the eMERGE-
PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems. Clin Pharmacol Ther
2014;96:482-9.
91. Chu WK, Edge P, Lee HS, Bansal V, Bafna V, et al. Ultraaccurate genome sequencing and haplotyping of single human cells.
Proceedings of the National Academy of Sciences 2017;114:12512-7.