Page 29 - Read Online
P. 29

Kaehler et al. Cancer Drug Resist 2019;2:18-30 I http://dx.doi.org/10.20517/cdr.2019.05                                                         Page 29

               60.  Chen SH, Pei D, Yang W, Cheng C, Jeha S, et al. Genetic variations in GRIA1 on chromosome 5q33 related to asparaginase
                   hypersensitivity. Clin Pharmacol Ther 2010;88:191-6.
               61.  Lopez-Santillan M, Iparraguirre L, Martin-Guerrero I, Gutierrez-Camino A, Garcia-Orad A. Review of pharmacogenetics studies
                   of L-asparaginase hypersensitivity in acute lymphoblastic leukemia points to variants in the GRIA1 gene. Drug Metab Pers Ther
                   2017;32:1-9.
               62.  Lee JJ, Swain SM. Peripheral neuropathy induced by microtubule-stabilizing agents. J Clin Oncol 2006;24:1633-42.
               63.  Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, et al. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol
                   3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 2007;104:17518-23.
               64.  Sucheston-Campbell LE, Clay-Gilmour AI, Barlow WE, Budd GT, Stram DO, et al. Genome-wide meta-analyses identifies novel
                   taxane-induced peripheral neuropathy-associated loci. Pharmacogenet Genomics 2018;28:49-55.
               65.  Li W, Zhang H, Assaraf YG, Zhao K, Xu X, et al. Overcoming ABC transporter-mediated multidrug resistance: molecular mechanisms
                   and novel therapeutic drug strategies. Drug Resist Updat 2016;27:14-29.
               66.  Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug
                   bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014;10:1337-54.
               67.  Cascorbi I, Gerloff T, Johne A, Meisel C, Hoffmeyer S, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug
                   transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001;69:169-74.
               68.  Haenisch S, Zimmermann U, Dazert E, Wruck CJ, Dazert P, et al. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and
                   protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 2007;7:56-65.
               69.  Plasschaert SL, Groninger E, Boezen M, Kema I, de Vries EG, et al. Influence of functional polymorphisms of the MDR1 gene on
                   vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther 2004;76:220-9.
               70.  Zheng Q, Wu H, Yu Q, Kim DH, Lipton JH, et al. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia
                   patients: a systematic review and meta-analysis. Pharmacogenomics J 2015;15:127-34.
               71.  Zu B, Li Y, Wang X, He D, Huang Z, et al. MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: a meta-
                   analysis. Pharmacogenomics 2014;15:667-77.
               72.  Jeong H, Herskowitz I, Kroetz DL, Rine J. Function-altering SNPs in the human multidrug transporter gene ABCB1 identified using a
                   Saccharomyces-based assay. PLoS Genet 2007;3:e39.
               73.  Sakurai A, Tamura A, Onishi Y, Ishikawa T. Genetic polymorphisms of ATP-binding cassette transporters ABCB1 and ABCG2:
                   therapeutic implications. Expert Opin Pharmacother 2005;6:2455-73.
               74.  Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially
                   expressed by immature human hematopoietic progenitors. Blood 2002;99:507-12.
               75.  Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is
                   inhibited by imatinib mesylate. Blood 2006;108:1370-3.
               76.  Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003;8:411-24.
               77.  Litman T, Brangi M, Hudson E, Fetsch P, Abati A, et al. The multidrug-resistant phenotype associated with overexpression of the new
                   ABC half-transporter, MXR (ABCG2). J Cell Sci 2000;113:2011-21.
               78.  Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate
                   genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 2009;15:4750-8.
               79.  van der Veldt AA, Eechoute K, Gelderblom H, Gietema J, Guchelaar HJ, et al. Genetic polymorphisms associated with a prolonged
                   progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res 2011;17:620-9.
               80.  Rudin CM, Liu W, Desai A, Karrison T, Jiang X, et al. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin
                   Oncol 2008;26:1119-27.
               81.  Sparreboom A, Loos WJ, Burger H, Sissung TM, Verweij J, et al. Effect of ABCG2 genotype on the oral bioavailability of topotecan.
                   Cancer Biol Ther 2005;4:650-8.
               82.  Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib
                   trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 2010;55:731-7.
               83.  Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T, et al. Comparison of ATP-binding cassette transporter interactions with
                   the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab Dispos 2010;38:1371-80.
               84.  Ripperger A, Benndorf RA. The C421A (Q141K) polymorphism enhances the 3’-untranslated region (3’-UTR)-dependent regulation of
                   ATP-binding cassette transporter ABCG2. Biochem Pharmacol 2016;104:139-47.
               85.  Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, et al. C421A polymorphism in the human breast cancer resistance protein gene is
                   associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002;1:611-6.
               86.  Poonkuzhali B, Lamba J, Strom S, Sparreboom A, Thummel K, et al. Association of breast cancer resistance protein/ABCG2
                   phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos 2008;36:780-95.
               87.  Cascorbi I, Werk AN. Advances and challenges in hereditary cancer pharmacogenetics. Expert Opin Drug Metab Toxicol 2017;13:73-82.
               88.  Rau T, Erney B, Gores R, Eschenhagen T, Beck J, et al. High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of
                   ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther 2006;80:468-76.
               89.  Au A, Baba AA, Azlan H, Norsa’adah B, Ankathil R. Clinical impact of ABCC1 and ABCC2 genotypes and haplotypes in mediating
                   imatinib resistance among chronic myeloid leukaemia patients. J Clin Pharm Ther 2014;39:685-90.
               90.  Cuffe S, Azad AK, Qiu X, Qiu X, Brhane Y, et al. ABCC2 polymorphisms and survival in the Princess Margaret cohort study and
                   the NCIC clinical trials group BR.24 trial of platinum-treated advanced stage non-small cell lung cancer patients. Cancer Epidemiol
   24   25   26   27   28   29   30   31   32   33   34