Page 145 - Read Online
P. 145
Murthy et al. Cancer Drug Resist 2019;2:665-79 I http://dx.doi.org/10.20517/cdr.2019.002 Page 679
H2B(Glu2). Nat Commun 2016;7:12404.
53. Knezevic CE, Wright G, Rix LLR, Kim W, Kuenzi BM, et al. Proteome-wide Profiling of Clinical PARP Inhibitors Reveals
Compound-Specific Secondary Targets. Cell Chem Biol 2016;23:1490-1503.
54. Puhalla S, Beumer JH, Pahuja S, Appleman LJ, Tawbi HAH, et al. Final results of a phase 1 study of single-agent veliparib (V) in
patients (pts) with either BRCA1/2-mutated cancer (BRCA+), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). J
Clin Oncol 2014;32:2570.
55. Li J, Kim S, Sha X, Wiegand R, Wu J, et al. Complex disease-, gene-, and drug-drug interactions: impacts of renal function, CYP2D6
phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin Cancer Res 2014;20:3931-44.
56. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy
resistance in hereditary ovarian carcinomas. J Clin Oncol 2011;29:3008-15.
57. Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, et al. Secondary mutations in BRCA2 associated with clinical resistance to a
PARP inhibitor. J Pathol 2013;229:422-9.
58. Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, et al. Secondary Somatic Mutations Restoring RAD51C and
RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-grade ovarian carcinoma. Cancer Discov
2017;7:984-998.
59. Goodall J, Mateo J, Yuan W, Mossop H, Porta N, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP
inhibition. Cancer Discov 2017;7:1006-17.
60. Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, et al. Analysis of Circulating Cell-Free DNA Identifies Multiclonal
Heterogeneity of BRCA2 Reversion Mutations Associated with Resistance to PARP Inhibitors. Cancer Discov 2017;7:999-1005.
61. Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, et al. BRCA1 Directs the Repair Pathway to Homologous Recombination by
Promoting 53BP1 Dephosphorylation. Cell Rep 2017;18:520-32.
62. Bunting SF, Callén E, Wong N, Chen HT, Polato F, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by
blocking resection of DNA breaks. Cell 2010;141:243-54.
63. Hurley RM, Wahner Hendrickson AE, Visscher DW, Ansell P, Harrell MI, et al. 53BP1 as a potential predictor of response in PARP
inhibitor-treated homologous recombination-deficient ovarian cancer. Gynecol Oncol 2019;153:127-134.
64. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, et al. REV7 counteracts DNA double-strand break resection and affects PARP
inhibition. Nature 2015;521:541-4.
65. Chaudhuri AR, Callen E, Ding X, Gogola E, Duarte AA, et al. Replication fork stability confers chemoresistance in BRCA-deficient
cells. Nature 2016;535:382-7.
66. Hill SJ, Decker B, Roberts EA, Horowitz NS, Muto MG, et al. Prediction of DNA Repair Inhibitor Response in Short-Term Patient-
Derived Ovarian Cancer Organoids. Cancer Discov 2018;8:1404-21.
67. Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, et al. Selective Loss of PARG Restores PARylation and Counteracts
PARP Inhibitor-Mediated Synthetic Lethality. Cancer Cell 2019;35:950-952.
68. Godoy H, Mhawech-Fauceglia P, Beck A, Miller A, Lele S, et al. Expression of poly (adenosine diphosphate-ribose) polymerase and
p53 in epithelial ovarian cancer and their role in prognosis and disease outcome. Int J Gynecol Pathol 2011;30:139-44.
69. Mazzotta A, Partipilo G, De Summa S, Giotta F, Simone G, et al. Nuclear PARP1 expression and its prognostic significance in breast
cancer patients. Tumour Biol 2016;37:6143-53.
70. Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol
Oncol 2017;147:695-704.
71. Kondrashova O, Topp M, Nesic K, Lieschke E, Ho GY, et al. Methylation of all BRCA1 copies predicts response to the PARP inhibitor
rucaparib in ovarian carcinoma. Nat Commun 2018;9:3970.
72. Neijenhuis S, Bajrami I, Miller R, Lord CJ, Ashworth A. Identification of miRNA modulators to PARP inhibitor response. DNA
Repair 2013;12:394-402.
73. Do K, Wilsker D, Ji J, Zlott J, Freshwater T, et al. Phase I study of single-agent AZD1775 (MK-1775), a Wee1 kinase inhibitor, in
patients with refractory solid tumors. J Clin Oncol 2015; 33:3409-15.
74. Moore KN, Secord AA, Geller MA, Miller DS, Cloven NG, et al. QUADRA: A phase 2, open-label, single-arm study to evaluate
niraparib in patients (pts) with relapsed ovarian cancer (ROC) who have received≥ 3 prior chemotherapy regimens. J Clin Oncol
2018;36:5514.
75. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated
immunosuppression. Clin Cancer Res 2017;23:3711-20.
76. Vinayak S, Tolaney SM, Schwartzberg LS, Mita MM, McCann GAL, et al. TOPACIO/Keynote-162: Niraparib+ pembrolizumab in
patients (pts) with metastatic triple-negative breast cancer (TNBC), a phase 2 trial. J Clin Oncol 2018;36:1011.
77. Teo MY, Seier K, Ostrovnaya I, Regazzi AM, Kania BE, et al. Alterations in DNA damage response and repair genes as potential
marker of clinical benefit from PD-1/PD-L1 blockade in advanced urothelial cancers. J Clin Oncol 2018;36:1685-94.
78. Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, et al. Combined immune checkpoint blockade as a therapeutic strategy for
BRCA1-mutated breast cancer. Sci Transl Med 2017;9:eaal4922.
79. Turner NC , Balmaña J, Fasching PA, Hurvitz SA, Telli ML, et al. A phase 2 study (2-stage, 2-cohort) of the oral PARP inhibitor
talazoparib (BMN 673) in patients with germline BRCA mutation and locally advanced and/or metastatic breast cancer (ABRAZO). J
Clin Oncol 2015;33:TPS1108.
80. Somlo G, Frankel PH, Arun BK, Ma CX, Garcia AA, et al. Efficacy of the PARP inhibitor veliparib with carboplatin or as a single
agent in patients with germline BRCA1- or BRCA2-associated metastatic brea. Clin Cancer Res 2017;23:4066-76.