Page 116 - Read Online
P. 116
Page 254 Abaji et al. Cancer Drug Resist 2019;2:242-55 I http://dx.doi.org/10.20517/cdr.2018.24
35. Liu C, Yang W, Devidas M, Cheng C, Pei D, et al. Clinical and genetic risk factors for acute pancreatitis in patients with acute
lymphoblastic leukemia. J Clin Oncol 2016;34:2133-40.
36. Witt H, Beer S, Rosendahl J, Chen JM, Chandak GR, et al. Variants in CPA1 are strongly associated with early onset chronic
pancreatitis. Nat Genet 2013;45:1216-20.
37. Derikx MH, Kovacs P, Scholz M, Masson E, Chen JM, et al. Polymorphisms at PRSS1-PRSS2 and CLDN2-MORC4 loci associate with
alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut 2015;64:1426-33.
38. Lee YJ, Kim KM, Choi JH, Lee BH, Kim GH, et al. High incidence of PRSS1 and SPINK1 mutations in Korean children with acute
recurrent and chronic pancreatitis. J Pediatr Gastroenterol Nutr 2011;52:478-81.
39. Sobczynska-Tomaszewska A, Bak D, Oralewska B, Oracz G, Norek A, et al. Analysis of CFTR, SPINK1, PRSS1 and AAT mutations in
children with acute or chronic pancreatitis. J Pediatr Gastroenterol Nutr 2006;43:299-306.
40. Tanaka Y, Urayama KY, Kawaguchi T, Mori M, Hasegawa D, et al. The association between L-asparaginase hypersensitivity and
genetic variants in Japanese childhood ALL patients. Blood 2016;128:5141.
41. Abaji R, Gagne V, Xu CJ, Spinella JF, Ceppi F, et al. Whole-exome sequencing identified genetic risk factors for asparaginase-related
complications in childhood ALL patients. Oncotarget 2017;8:43752-67.
42. Karol SE, Larsen E, Cheng C, Cao X, Yang W, et al. Genetics of ancestry-specific risk for relapse in acute lymphoblastic leukemia.
Leukemia 2017;31:1325-32.
43. Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, et al. Intravenous pegylated asparaginase versus intramuscular native
Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised, open-label
phase 3 trial. Lancet Oncol 2015;16:1677-90.
44. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, et al. Treating childhood acute lymphoblastic leukemia without cranial
irradiation. N Engl J Med 2009;360:2730-41.
45. Conter V, Valsecchi MG, Parasole R, Putti MC, Locatelli F, et al. Childhood high-risk acute lymphoblastic leukemia in first remission:
results after chemotherapy or transplant from the AIEOP ALL 2000 study. Blood 2014;123:1470-8.
46. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia:
results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol 2014;32:174-84.
47. Larsen EC, Devidas M, Chen S, Salzer WL, Raetz EA, et al. Dexamethasone and high-dose methotrexate improve outcome for children
and young adults with high-risk B-acute lymphoblastic leukemia: a report from children’s oncology group study AALL0232. J Clin
Oncol 2016;34:2380-8.
48. Bowman WP, Larsen EL, Devidas M, Linda SB, Blach L, et al. Augmented therapy improves outcome for pediatric high risk acute
lymphocytic leukemia: results of Children’s Oncology Group trial P9906. Pediatr Blood Cancer 2011;57:569-77.
49. Marshall GM, Dalla Pozza L, Sutton R, Ng A, de Groot-Kruseman HA, et al. High-risk childhood acute lymphoblastic leukemia in first
remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013;27:1497-503.
50. Yang JJ, Cheng C, Devidas M, Cao X, Fan Y, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat
Genet 2011;43:237-41.
51. Yang JJ, Cheng C, Devidas M, Cao X, Campana D, et al. Genome-wide association study identifies germline polymorphisms associated
with relapse of childhood acute lymphoblastic leukemia. Blood 2012;120:4197-204.
52. Silverman LB, Gelber RD, Dalton VK, Asselin BL, Barr RD, et al. Improved outcome for children with acute lymphoblastic leukemia:
results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211-8.
53. Pession A, Valsecchi MG, Masera G, Kamps WA, Magyarosy E, et al. Long-term results of a randomized trial on extended use of high
dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol 2005;23:7161-7.
54. Pastorczak A, Fendler W, Zalewska-Szewczyk B, Gorniak P, Lejman M, et al. Asparagine synthetase (ASNS) gene polymorphism
is associated with the outcome of childhood acute lymphoblastic leukemia by affecting early response to treatment. Leuk Res
2014;38:180-3.
55. Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, et al. MicroRNA characterize genetic diversity
and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011;96:703-11.
56. Mei Y, Gao C, Wang K, Cui L, Li W, et al. Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric
acute lymphoblastic leukemia. Cancer Sci 2014;105:463-72.
57. Mesrian Tanha H, Mojtabavi Naeini M, Rahgozar S, Moafi A, Honardoost MA. Integrative computational in-depth analysis of
dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new
potential gene-miRNA pathways involved in response to treatment. Tumour Biol 2016;37:7861-72.
58. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res
2009;19:92-105.
59. Krejci O, Starkova J, Otova B, Madzo J, Kalinova M, et al. Upregulation of asparagine synthetase fails to avert cell cycle arrest induced
by L-asparaginase in TEL/AML1-positive leukaemic cells. Leukemia 2004;18:434-41.
60. Escherich G, Troger A, Gobel U, Graubner U, Pekrun A, et al. The long-term impact of in vitro drug sensitivity on risk stratification and
treatment outcome in acute lymphoblastic leukemia of childhood (CoALL 06-97). Haematologica 2011;96:854-62.
61. Wellmann R, Borden BA, Danahey K, Nanda R, Polite BN, et al. Analyzing the clinical actionability of germline pharmacogenomic
findings in oncology. Cancer 2018;124:3052-65.
62. Cui H, Darmanin S, Natsuisaka M, Kondo T, Asaka M, et al. Enhanced expression of asparagine synthetase under glucose-deprived
conditions protects pancreatic cancer cells from apoptosis induced by glucose deprivation and cisplatin. Cancer Res 2007;67:3345-55.