Page 98 - Read Online
P. 98

Page 246                                          Van Der Steen et al. Cancer Drug Resist 2018;1:230-49 I http://dx.doi.org/10.20517/cdr.2018.13

                   loss of EGFR T790M Is associated with early resistance and competing resistance mechanisms. J Thorac Oncol 2017;12:S1767-8.
               68.  Wang S, Song Y, Liu D. EAI045: the fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett
                   2017;385:51-4.
               69.  Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ,
                   Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W. MET amplification occurs with
                   or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A
                   2007;104:20932-7.
               70.  Cappuzzo F, Jänne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi L, Roncalli M, Destro A,
                   Incarbone M, Alloisio M, Santoro A, Varella-Garcia M. MET increased gene copy number and primary resistance to gefitinib therapy in
                   non-small-cell lung cancer patients. Ann Oncol 2009;20:298-304.
               71.  Guo A, Villén J, Kornhauser J, Lee KA, Stokes MP, Rikova K, Possemato A, Nardone J, Innocenti G, Wetzel R, Wang Y, MacNeill J,
                   Mitchell J, Gygi SP, Rush J, Polakiewicz RD, Comb MJ. Signaling networks assembled by oncogenic EGFR and c-Met. Proc Natl Acad
                   Sci U S A 2008;105:692-7.
               72.  Shi P, Oh YT, Zhang G, Yao W, Yue P, Li Y, Kanteti R, Riehm J, Salgia R, Owonikoko TK, Ramalingam SS, Chen M, Sun SY. Met gene
                   amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer
                   treatment. Cancer Lett 2016;380:494-504.
               73.  Ou SI, Agarwal N, Ali SM. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that
                   symptomatically responded to crizotinib treatment post-osimertinib progression. Lung Cancer 2016;98:59-61.
               74.  Minari R, Bordi P, La Monica S, Squadrilli A, Leonetti A, Bottarelli L, Azzoni C, Lagrasta CAM, Gnetti L, Campanini N, Petronini
                   PG, Alfieri R, Tiseo M. Concurrent acquired BRAF V600E mutation and MET amplification as resistance mechanism of first-line
                   osimertinib treatment in a patient with EGFR-mutated NSCLC. J Thorac Oncol 2018;13:e89-91.
               75.  Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter. J Clin Oncol 2013;31:1112-21.
               76.  Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to
                   gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005;2:e73.
               77.  Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S. Assessment of somatic
                   KRAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies
                   in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 2008;9:962-72.
               78.  Eberlein CA, Stetson D, Markovets AA, Al-Kadhimi KJ, Lai Z, Fisher PR, Meador CB, Spitzler P, Ichihara E, Ross SJ, Ahdesmaki MJ,
                   Ahmed A, Ratcliffe LE, O’Brien EL, Barnes CH, Brown H, Smith PD, Dry JR, Beran G, Thress KS, Dougherty B, Pao W, Cross DA.
                   Acquired resistance to the mutant-selective EGFR inhibitor AZD9291 is associated with increased dependence on RAS signaling in
                   preclinical models. Cancer Res 2015;75:2489-500.
               79.  Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK, Choi YJ, Choi CM, Kim SW,
                   Jang SJ, Park YS, Kim WS, Lee DH, Lee JS, Miller VA, Arcila M, Ladanyi M, Moonsamy P, Sawyers C, Boggon TJ, Ma PC, Costa C,
                   Taron M, Rosell R, Halmos B, Bivona TG. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat
                   Genet 2012;44:852-60.
               80.  Wu F, Li J, Jang C, Wang J, Xiong J. The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung
                   carcinoma. Int J Clin Exp Pathol 2014;7:6653-61.
               81.  Tian Y, Zhang Z, Miao L, Yang Z, Yang J, Wang Y, Qian D, Cai H, Wang Y. Anexelekto (AXL) increases resistance to EGFR-TKI and
                   activation of AKT and ERK1/2 in non-small cell lung cancer cells. Oncol Res 2016;24:295-303.
               82.  Moasser MM, Basso A, Averbuch SD, Rosen N. The tyrosine kinase inhibitor ZD1839 (“ Iressa ”) inhibits HER2-driven signaling and
                   suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 2001;61:7184-8.
               83.  Varella-Garcia M, Mitsudomi T, Yatabe Y, Kosaka T, Nakajima E, Xavier AC, Skokan M, Zeng C, Franklin WA, Bunn PA Jr, Hirsch FR.
                   EGFR and HER2 genomic gain in recurrent non-small cell lung cancer after surgery: impact on outcome to treatment with gefitinib and
                   association with EGFR and KRAS mutations in a Japanese cohort. J Thorac Oncol 2009;4:318-25.
               84.  Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL, Rossi E, Ludovini V, Gregorc V, Toschi L,
                   Franklin WA, Crino L, Gazdar AF, Bunn PA Jr, Hirsch FR. Increased HER2 gene copy number is associated with response to gefitinib
                   therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005;23:5007-18.
               85.  Takezawa K, Pirazzoli V, Arcila ME, Nebhan CA, Song X, de Stanchina E, Ohashi K, Janjigian YY, Spitzler PJ, Melnick MA, Riely GJ,
                   Kris MG, Miller VA, Ladanyi M, Politi K, Pao W. HER2 amplification: a potential mechanism of acquired resistance to egfr inhibition
                   in EGFR -mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov 2012;2:922-33.
               86.  Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S, Carpenter G, Gazdar AF, Muthuswamy SK, Arteaga CL. HER2
                   kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine
                   kinase inhibitors. Cancer Cell 2006;10:25-38.
               87.  Ou SI, Schrock AB, Bocharov EV, Klempner SJ, Haddad CK, Steinecker G, Johnson M, Gitlitz BJ, Chung J, Campregher PV, Ross JS,
                   Stephens PJ, Miller VA, Suh JH, Ali SM, Velcheti V. HER2 transmembrane domain (TMD) mutations (V659/G660) that stabilize homo-
                   and heterodimerization are rare oncogenic drivers in lung adenocarcinoma that respond to afatinib. J Thorac Oncol 2017;12:446-57.
               88.  Liu S, Li S, Hai J, Wang X, Chen T, Quinn MM, Gao P, Zhang Y, Ji H, Cross DAE, Wong KK. Targeting HER2 aberrations in non-small
                   cell lung cancer with osimertinib. Clin Cancer Res 2018;24:2594-604.
               89.  Landi L, Tiseo M, Chiari R, Ricciardi S, Rossi E, Galetta D, Novello S, Milella M, D’Incecco A, Minuti G, Tibaldi C, Salvini J,
                   Facchinetti F, Haspinger ER, Cortinovis D, Santo A, Banna G, Catino A, GiajLevra M, Crinò L, de Marinis F, Cappuzzo F. Activity
   93   94   95   96   97   98   99   100   101   102   103