Page 77 - Read Online
P. 77

Page 176                                           Genovese et al. Cancer Drug Resist 2018;1:164-80  I  http://dx.doi.org/10.20517/cdr.2018.10

                   cancer-derived exosomes. J Proteomics 2013;80:171-82.
               34.  Pienimaeki-Roemer A, Kuhlmann K, Böttcher A, Konovalova T, Black A, Orsó E, Liebisch G, Ahrens M, Eisenacher M, Meyer HE,
                   Schmitz G. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion
                   2015;55:507-21.
               35.  Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A
                   2004;101:13368-73.
               36.  Ali R, Huang Y, Maher SE, Kim RW, Giordano FJ, Tellides G, Geirsson A. miR-1 mediated suppression of Sorcin regulates myocardial
                   contractility through modulation of Ca2+ signaling. J Mol Cell Cardiol 2012;52:1027-37.
               37.  Bers DM, Despa S, Bossuyt J. Regulation of Ca2+ and Na+ in normal and failing cardiac myocytes. Ann N Y Acad Sci 2006;1080:165-77.
               38.  Seidler T, Miller SL, Loughrey CM, Kania A, Burow A, Kettlewell S, Teucher N, Wagner S, Kögler H, Meyers MB, Hasenfuss G,
                   Smith GL. Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes.
                   Circ Res 2003;93:132-9.
               39.  Lokuta AJ, Meyers MB, Sander PR, Fishman GI, Valdivia HH. Modulation of cardiac ryanodine receptors by sorcin. J Biol Chem
                   1997;272:25333-8.
               40.  Collis LP, Meyers MB, Zhang J, Phoon CK, Sobie EA, Coetzee WA, Fishman GI. Expression of a sorcin missense mutation in the heart
                   modulates excitation-contraction coupling. FASEB J 2007;21:475-87.
               41.  Farrell EF, Antaramian A, Rueda A, Gómez AM, Valdivia HH. Sorcin inhibits calcium release and modulates excitation-contraction
                   coupling in the heart. J Biol Chem 2003;278:34660-6.
               42.  Frank KF, Bölck B, Ding Z, Krause D, Hattebuhr N, Malik A, Brixius K, Hajjar RJ, Schrader J, Schwinger RH. Overexpression of
                   sorcin enhances cardiac contractility in vivo and in vitro. J Mol Cell Cardiol 2005;38:607-15.
               43.  Suarez J, Belke DD, Gloss B, Dieterle T, McDonough PM, Kim YK, Brunton LL, Dillmann WH. In vivo adenoviral transfer of sorcin
                   reverses cardiac contractile abnormalities of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2004;286:H68-75.
               44.  Chen X, Weber C, Farrell ET, Alvarado FJ, Zhao YT, Gómez AM, Valdivia HH. Sorcin ablation plus beta-adrenergic stimulation
                   generate an arrhythmogenic substrate in mouse ventricular myocytes. J Mol Cell Cardiol 2018;114:199-210.
               45.  Alzheimer’s Association Calcium Hypothesis Workgroup. Calcium hypothesis of Alzheimer’s disease and brain aging: a framework for
                   integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 2017;13:178-182.e17.
               46.  Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson’s disease. Exp
                   Neurol 2017;298:202-9.
               47.  Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol
                   Neurodegener 2014;9:21.
               48.  Pack-Chung E, Meyers MB, Pettingell WP, Moir RD, Brownawell AM, Cheng I, Tanzi RE, Kim TW. Presenilin 2 interacts with sorcin,
                   a modulator of the ryanodine receptor. J Biol Chem 2000; 275:14440-5.
               49.  Woods WS, Boettcher JM, Zhou DH, Kloepper KD, Hartman KL, Ladror DT, Qi Z, Rienstra CM, George JM. Conformation-specific
                   binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy. J Biol Chem 2007;282:34555-67.
               50.  Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I. Presenilins form ER
                   Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 2006;126:981-93.
               51.  Takeda T, Asahi M, Yamaguchi O, Hikoso S, Nakayama H, Kusakari Y, Kawai M, Hongo K, Higuchi Y, Kashiwase K, Watanabe T,
                   Taniike M, Nakai A, Nishida K, Kurihara S, Donoviel DB, Bernstein A, Tomita T, Iwatsubo T, Hori M, Otsu K. Presenilin 2 regulates
                   the systolic function of heart by modulating Ca2+ signaling. FASEB J 2005;19:2069-71.
               52.  Kim SI, Lee HJ, Kim SS, Kwon YS, Chun W. Sequestration of sorcin by aberrant forms of tau results in the defective calcium
                   homeostasis. Korean J Physiol Pharmacol 2016;20:387-97.
               53.  Xie H, Chang M, Hu X, Wang D, Tian M, Li G, Jiang H, Wang Y, Dong Z, Zhang Y, Hu L. Proteomics analysis of MPP+-induced
                   apoptosis in SH-SY5Y cells. Neurol Sci 2011;32:221-8.
               54.  Werner CJ, Heyny-von Haussen R, Mall G, Wolf S. Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci
                   2008;6:8.
               55.  Jin J, Hulette C, Wang Y, Zhang T, Pan C, Wadhwa R, Zhang J. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75:
                   relevance to Parkinson disease. Mol Cell Proteomics 2006;5:1193-204.
               56.  Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, El
                   Hokayem J, Myers AJ. Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome
                   Res 2012;11:3053-67.
               57.  Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G. Quantification of the brain
                   proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res 2014;13:2056-68.
               58.  Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo T, Glass J, Gearing M,
                   Thambisetty M, Troncoso JC, Geschwind DH, Lah JJ, Levey AI. A multi-network approach identifies protein-specific co-expression in
                   asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 2017;4:60-72.e4.
               59.  Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M, Cohen M, Haldiman T, Kim C, Han X, Shao Y, Safar JG,
                   Ueberheide B, Wisniewski T. Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta
                   Neuropathol 2017;133:933-54.
               60.  Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M, Li KW, Hoozemans JJM, Smit AB,
   72   73   74   75   76   77   78   79   80   81   82