Page 89 - Read Online
P. 89

Wang et al. Art Int Surg. 2025;5:465-75  https://dx.doi.org/10.20517/ais.2025.03    Page 475

               28.      Yamato J, Ohya J, Ishii K. Recognizing human action in time-sequential images using hidden Markov model. IEEE Xplore.
                   1992;92:379-85.  DOI
               29.      Yoon BJ. Hidden markov models and their applications in biological sequence analysis. Curr Genomics. 2009;10:402-15.  DOI
                   PubMed  PMC
               30.      Avilés-arriaga H, Sucar-succar L, Mendoza-durán C, Pineda-cortés L. A comparison of dynamic naive bayesian classifiers and hidden.
                   JART. 2011;9:81-102.  DOI
               31.      Liu J, Ying D, Rymer WZ. EMG burst presence probability: a joint time-frequency representation of muscle activity and its application
                   to onset detection. J Biomech. 2015;48:1193-7.  DOI  PubMed  PMC
               32.      Vaskov AK, Vu PP, North N, et al. Surgically implanted electrodes enable real-time finger and grasp pattern recognition for prosthetic
                   hands. IEEE Trans Robot. 2022;38:2841-57.  DOI  PubMed  PMC
               33.      Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
                   JAMA. 2009;301:619-28.  DOI  PubMed  PMC
               34.      Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
                   IEEE Trans Neural Syst Rehabil Eng. 2010;18:185-92.  DOI  PubMed  PMC
               35.      Cipriani C, Antfolk C, Controzzi M, et al. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE
                   Trans Neural Syst Rehabil Eng. 2011;19:260-70.  DOI  PubMed
               36.      Lee C, Vaskov AK, Gonzalez MA, et al. Use of Regenerative Peripheral Nerve Interfaces and intramuscular electrodes to improve
                   prosthetic grasp selection: a case study. J Neural Eng. 2022;19:066010.  DOI  PubMed  PMC
               37.      Vu PP, Vaskov AK, Irwin ZT, et al. A Regenerative Peripheral Nerve Interface allows real-time control of an artificial hand in upper
                   limb amputees. Sci Transl Med. 2020;12:eaay2857.  DOI  PubMed  PMC
               38.      Garcia GP, Nitta K, Lavieri MS, et al. Using Kalman filtering to forecast disease trajectory for patients with normal tension glaucoma.
                   Am J Ophthalmol. 2019;199:111-9.  DOI  PubMed  PMC
               39.      Zhalechian M, Van Oyen MP, Lavieri MS, et al. Augmenting Kalman filter machine learning models with data from OCT to predict
                   future visual field loss: an analysis using data from the african descent and glaucoma evaluation study and the diagnostic innovation in
                   glaucoma study. Ophthalmol Sci. 2022;2:100097.  DOI  PubMed  PMC
               40.      Foussier J, Teichmann D, Jia J, Misgeld B, Leonhardt S. An adaptive Kalman filter approach for cardiorespiratory signal extraction
                   and fusion of non-contacting sensors. BMC Med Inform Decis Mak. 2014;14:37.  DOI  PubMed  PMC
               41.      Li Z, O’Doherty JE, Lebedev MA, Nicolelis MA. Adaptive decoding for brain-machine interfaces through Bayesian parameter
                   updates. Neural Comput. 2011;23:3162-204.  DOI  PubMed  PMC
               42.      Vu PP, Vaskov AK, Lee C, et al. Long-term upper-extremity prosthetic control using Regenerative Peripheral Nerve Interfaces and
                   implanted EMG electrodes. J Neural Eng. 2023;20:026039.  DOI  PubMed  PMC
   84   85   86   87   88   89   90   91   92   93   94