Page 89 - Read Online
P. 89
Wang et al. Art Int Surg. 2025;5:465-75 https://dx.doi.org/10.20517/ais.2025.03 Page 475
28. Yamato J, Ohya J, Ishii K. Recognizing human action in time-sequential images using hidden Markov model. IEEE Xplore.
1992;92:379-85. DOI
29. Yoon BJ. Hidden markov models and their applications in biological sequence analysis. Curr Genomics. 2009;10:402-15. DOI
PubMed PMC
30. Avilés-arriaga H, Sucar-succar L, Mendoza-durán C, Pineda-cortés L. A comparison of dynamic naive bayesian classifiers and hidden.
JART. 2011;9:81-102. DOI
31. Liu J, Ying D, Rymer WZ. EMG burst presence probability: a joint time-frequency representation of muscle activity and its application
to onset detection. J Biomech. 2015;48:1193-7. DOI PubMed PMC
32. Vaskov AK, Vu PP, North N, et al. Surgically implanted electrodes enable real-time finger and grasp pattern recognition for prosthetic
hands. IEEE Trans Robot. 2022;38:2841-57. DOI PubMed PMC
33. Kuiken TA, Li G, Lock BA, et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
JAMA. 2009;301:619-28. DOI PubMed PMC
34. Li G, Schultz AE, Kuiken TA. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2010;18:185-92. DOI PubMed PMC
35. Cipriani C, Antfolk C, Controzzi M, et al. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE
Trans Neural Syst Rehabil Eng. 2011;19:260-70. DOI PubMed
36. Lee C, Vaskov AK, Gonzalez MA, et al. Use of Regenerative Peripheral Nerve Interfaces and intramuscular electrodes to improve
prosthetic grasp selection: a case study. J Neural Eng. 2022;19:066010. DOI PubMed PMC
37. Vu PP, Vaskov AK, Irwin ZT, et al. A Regenerative Peripheral Nerve Interface allows real-time control of an artificial hand in upper
limb amputees. Sci Transl Med. 2020;12:eaay2857. DOI PubMed PMC
38. Garcia GP, Nitta K, Lavieri MS, et al. Using Kalman filtering to forecast disease trajectory for patients with normal tension glaucoma.
Am J Ophthalmol. 2019;199:111-9. DOI PubMed PMC
39. Zhalechian M, Van Oyen MP, Lavieri MS, et al. Augmenting Kalman filter machine learning models with data from OCT to predict
future visual field loss: an analysis using data from the african descent and glaucoma evaluation study and the diagnostic innovation in
glaucoma study. Ophthalmol Sci. 2022;2:100097. DOI PubMed PMC
40. Foussier J, Teichmann D, Jia J, Misgeld B, Leonhardt S. An adaptive Kalman filter approach for cardiorespiratory signal extraction
and fusion of non-contacting sensors. BMC Med Inform Decis Mak. 2014;14:37. DOI PubMed PMC
41. Li Z, O’Doherty JE, Lebedev MA, Nicolelis MA. Adaptive decoding for brain-machine interfaces through Bayesian parameter
updates. Neural Comput. 2011;23:3162-204. DOI PubMed PMC
42. Vu PP, Vaskov AK, Lee C, et al. Long-term upper-extremity prosthetic control using Regenerative Peripheral Nerve Interfaces and
implanted EMG electrodes. J Neural Eng. 2023;20:026039. DOI PubMed PMC

