Page 71 - Read Online
P. 71

Ganesan et al. Art Int Surg 2024;4:364-75  https://dx.doi.org/10.20517/ais.2024.68                                                      Page 374

               5.       Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial intelligence in surgery: the future is now. Eur Surg Res 2024;65:22-
                   39.  DOI  PubMed
               6.       Athanasopoulou K, Daneva GN, Adamopoulos PG, Scorilas A. Artificial intelligence: the milestone in modern biomedical research.
                   BioMedInformatics 2022;2:727-44.  DOI
               7.       Morris MX, Fiocco D, Caneva T, Yiapanis P, Orgill DP. Current and future applications of artificial intelligence in surgery:
                   implications for clinical practice and research. Front Surg 2024;11:1393898.  DOI  PubMed  PMC
               8.       Patel NP, Granick MS. Wound education: American medical students are inadequately trained in wound care. Ann Plast Surg
                   2007;59:53-5; discussion 55.  DOI  PubMed
               9.       Sürme Y, Kartın PT, Çürük GN. Knowledge and practices of nurses regarding wound healing. J Perianesth Nurs 2018;33:471-8.  DOI
                   PubMed
               10.      Weenig RH, Davis MDP, Dahl PR, Su WPD. Skin ulcers misdiagnosed as pyoderma gangrenosum. N Engl J Med 2002;347:1412-8.
                   DOI  PubMed
               11.      Birkner M, Schalk J, von den Driesch P, Schultz ES. Computer-assisted differential diagnosis of pyoderma gangrenosum and venous
                   ulcers with deep neural networks. J Clin Med 2022;11:7103.  DOI  PubMed  PMC
               12.      Hüsers J, Moelleken M, Richter ML, et al. An image based object recognition system for wound detection and classification of diabetic
                   foot and venous leg ulcers. Stud Health Technol Inform 2022;294:63-7.  DOI  PubMed
               13.      Swerdlow M, Guler O, Yaakov R, Armstrong DG. Simultaneous segmentation and classification of pressure injury image data using
                   Mask-R-CNN. Comput Math Methods Med 2023;2023:3858997.  DOI  PubMed  PMC
               14.      Zahia S, Sierra-Sosa D, Garcia-Zapirain B, Elmaghraby A. Tissue classification and segmentation of pressure injuries using
                   convolutional neural networks. Comput Methods Programs Biomed 2018;159:51-8.  DOI  PubMed
               15.      Chang CW, Christian M, Chang DH et al. Deep learning approach based on superpixel segmentation assisted labeling for automatic
                   pressure ulcer diagnosis. PLoS One 2022;17:e0264139.  DOI  PubMed  PMC
               16.      Eldem H, Ülker E, Işıklı OY. Alexnet architecture variations with transfer learning for classification of wound images. Eng Sci
                   Technol Int J 2023;45:101490.  DOI
               17.      Mohammed HT, Bartlett RL, Babb D, Fraser RDJ, Mannion D. A time motion study of manual versus artificial intelligence methods
                   for wound assessment. PLoS One 2022;17:e0271742.  DOI  PubMed  PMC
               18.      Lau CH, Yu KH, Yip TF, et al. An artificial intelligence-enabled smartphone app for real-time pressure injury assessment. Front Med
                   Technol 2022;4:905074.  DOI  PubMed  PMC
               19.      Chan KS, Chan YM, Tan AHM, et al. Clinical validation of an artificial intelligence-enabled wound imaging mobile application in
                   diabetic foot ulcers. Int Wound J 2022;19:114-24.  DOI  PubMed  PMC
               20.      Aldoulah ZA, Malik H, Molyet R. A novel fused multi-class deep learning approach for chronic wounds classification. Appl Sci
                   2023;13:11630.  DOI
               21.      Veredas F, Mesa H, Morente L. Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE
                   Trans Med Imaging 2010;29:410-27.  DOI  PubMed
               22.      Lien AS, Lai C, Wei J, Yang H, Yeh J, Tai H. A granulation tissue detection model to track chronic wound healing in DM foot ulcers.
                   Electronics 2022;11:2617.  DOI
               23.      Liu Z, John J, Agu E. Diabetic foot ulcer ischemia and infection classification using efficientnet deep learning models. IEEE Open J
                   Eng Med Biol 2022;3:189-201.  DOI  PubMed  PMC
               24.      Viswanathan V, Govindan S, Selvaraj B, Rupert S, Kumar R. A clinical study to evaluate autofluorescence imaging of diabetic foot
                   ulcers using a novel artificial intelligence enabled noninvasive device. Int J Low Extrem Wounds 2024;23:169-76.  DOI  PubMed
               25.      Chairat S, Chaichulee S, Dissaneewate T, Wangkulangkul P, Kongpanichakul L. AI-assisted assessment of wound tissue with
                   automatic color and measurement calibration on images taken with a smartphone. Healthcare 2023;11:273.  DOI  PubMed  PMC
               26.      Kavitha I, Suganthi SS, Ramakrishnan S. Analysis of chronic wound images using factorization based segmentation and machine
                   learning methods. In: Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics (ICCBB '17);
                   New York, USA. pp. 74-8.  DOI
               27.      Kaile K, Leiva K, Mahadevan J, et al. Low-cost smartphone based imaging device to detect subsurface tissue oxygenation of wounds.
                   In: Optics and Biophotonics in Low-Resource Settings V; San Francisco, USA. 2019. pp. 62-5.  DOI
               28.      Zoppo G, Marrone F, Pittarello M, et al. AI technology for remote clinical assessment and monitoring. J Wound Care 2020;29:692-
                   706.  DOI  PubMed
               29.      Guadagnin R, Neves RDS, Santana LA, Guilhem DB. An image mining based approach to detect pressure ulcer stage. Pattern
                   Recognit Image Anal 2014;24:292-6.  DOI
               30.      Mondragon N, Zito PM. Pressure injury. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557868/.
                   [Last accessed on 2 Nov 2024].
               31.      Al Aboud AM, Manna B. Wound pressure injury management. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.
                   gov/books/NBK532897/. [Last accessed on 2 Nov 2024].
               32.      Gabison S, Pupic N, Evans G, Dolatabadi E, Dutta T. Measuring repositioning in home care for pressure injury prevention and
                   management. Sensors 2022;22:7013.  DOI  PubMed  PMC
               33.      Danilovich I, Moshkin V, Reimche A, Tevelevich M, Mikhaylovskiy N. Video monitoring over anti-decubitus protocol execution with
                   a deep neural network to prevent pressure ulcer. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:1384-7.  DOI  PubMed
   66   67   68   69   70   71   72   73   74   75   76