Page 71 - Read Online
P. 71
Ganesan et al. Art Int Surg 2024;4:364-75 https://dx.doi.org/10.20517/ais.2024.68 Page 374
5. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial intelligence in surgery: the future is now. Eur Surg Res 2024;65:22-
39. DOI PubMed
6. Athanasopoulou K, Daneva GN, Adamopoulos PG, Scorilas A. Artificial intelligence: the milestone in modern biomedical research.
BioMedInformatics 2022;2:727-44. DOI
7. Morris MX, Fiocco D, Caneva T, Yiapanis P, Orgill DP. Current and future applications of artificial intelligence in surgery:
implications for clinical practice and research. Front Surg 2024;11:1393898. DOI PubMed PMC
8. Patel NP, Granick MS. Wound education: American medical students are inadequately trained in wound care. Ann Plast Surg
2007;59:53-5; discussion 55. DOI PubMed
9. Sürme Y, Kartın PT, Çürük GN. Knowledge and practices of nurses regarding wound healing. J Perianesth Nurs 2018;33:471-8. DOI
PubMed
10. Weenig RH, Davis MDP, Dahl PR, Su WPD. Skin ulcers misdiagnosed as pyoderma gangrenosum. N Engl J Med 2002;347:1412-8.
DOI PubMed
11. Birkner M, Schalk J, von den Driesch P, Schultz ES. Computer-assisted differential diagnosis of pyoderma gangrenosum and venous
ulcers with deep neural networks. J Clin Med 2022;11:7103. DOI PubMed PMC
12. Hüsers J, Moelleken M, Richter ML, et al. An image based object recognition system for wound detection and classification of diabetic
foot and venous leg ulcers. Stud Health Technol Inform 2022;294:63-7. DOI PubMed
13. Swerdlow M, Guler O, Yaakov R, Armstrong DG. Simultaneous segmentation and classification of pressure injury image data using
Mask-R-CNN. Comput Math Methods Med 2023;2023:3858997. DOI PubMed PMC
14. Zahia S, Sierra-Sosa D, Garcia-Zapirain B, Elmaghraby A. Tissue classification and segmentation of pressure injuries using
convolutional neural networks. Comput Methods Programs Biomed 2018;159:51-8. DOI PubMed
15. Chang CW, Christian M, Chang DH et al. Deep learning approach based on superpixel segmentation assisted labeling for automatic
pressure ulcer diagnosis. PLoS One 2022;17:e0264139. DOI PubMed PMC
16. Eldem H, Ülker E, Işıklı OY. Alexnet architecture variations with transfer learning for classification of wound images. Eng Sci
Technol Int J 2023;45:101490. DOI
17. Mohammed HT, Bartlett RL, Babb D, Fraser RDJ, Mannion D. A time motion study of manual versus artificial intelligence methods
for wound assessment. PLoS One 2022;17:e0271742. DOI PubMed PMC
18. Lau CH, Yu KH, Yip TF, et al. An artificial intelligence-enabled smartphone app for real-time pressure injury assessment. Front Med
Technol 2022;4:905074. DOI PubMed PMC
19. Chan KS, Chan YM, Tan AHM, et al. Clinical validation of an artificial intelligence-enabled wound imaging mobile application in
diabetic foot ulcers. Int Wound J 2022;19:114-24. DOI PubMed PMC
20. Aldoulah ZA, Malik H, Molyet R. A novel fused multi-class deep learning approach for chronic wounds classification. Appl Sci
2023;13:11630. DOI
21. Veredas F, Mesa H, Morente L. Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE
Trans Med Imaging 2010;29:410-27. DOI PubMed
22. Lien AS, Lai C, Wei J, Yang H, Yeh J, Tai H. A granulation tissue detection model to track chronic wound healing in DM foot ulcers.
Electronics 2022;11:2617. DOI
23. Liu Z, John J, Agu E. Diabetic foot ulcer ischemia and infection classification using efficientnet deep learning models. IEEE Open J
Eng Med Biol 2022;3:189-201. DOI PubMed PMC
24. Viswanathan V, Govindan S, Selvaraj B, Rupert S, Kumar R. A clinical study to evaluate autofluorescence imaging of diabetic foot
ulcers using a novel artificial intelligence enabled noninvasive device. Int J Low Extrem Wounds 2024;23:169-76. DOI PubMed
25. Chairat S, Chaichulee S, Dissaneewate T, Wangkulangkul P, Kongpanichakul L. AI-assisted assessment of wound tissue with
automatic color and measurement calibration on images taken with a smartphone. Healthcare 2023;11:273. DOI PubMed PMC
26. Kavitha I, Suganthi SS, Ramakrishnan S. Analysis of chronic wound images using factorization based segmentation and machine
learning methods. In: Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics (ICCBB '17);
New York, USA. pp. 74-8. DOI
27. Kaile K, Leiva K, Mahadevan J, et al. Low-cost smartphone based imaging device to detect subsurface tissue oxygenation of wounds.
In: Optics and Biophotonics in Low-Resource Settings V; San Francisco, USA. 2019. pp. 62-5. DOI
28. Zoppo G, Marrone F, Pittarello M, et al. AI technology for remote clinical assessment and monitoring. J Wound Care 2020;29:692-
706. DOI PubMed
29. Guadagnin R, Neves RDS, Santana LA, Guilhem DB. An image mining based approach to detect pressure ulcer stage. Pattern
Recognit Image Anal 2014;24:292-6. DOI
30. Mondragon N, Zito PM. Pressure injury. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557868/.
[Last accessed on 2 Nov 2024].
31. Al Aboud AM, Manna B. Wound pressure injury management. In: StatPearls [Internet]. Available from: https://www.ncbi.nlm.nih.
gov/books/NBK532897/. [Last accessed on 2 Nov 2024].
32. Gabison S, Pupic N, Evans G, Dolatabadi E, Dutta T. Measuring repositioning in home care for pressure injury prevention and
management. Sensors 2022;22:7013. DOI PubMed PMC
33. Danilovich I, Moshkin V, Reimche A, Tevelevich M, Mikhaylovskiy N. Video monitoring over anti-decubitus protocol execution with
a deep neural network to prevent pressure ulcer. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:1384-7. DOI PubMed