Page 52 - Read Online
P. 52

Page 315                                                        Brenac et al. Art Int Surg 2024;4:296-315  https://dx.doi.org/10.20517/ais.2024.49

                   printing for surgical planning. Expert Rev Med Devices 2018;15:349-56.  DOI  PubMed
               57.      Booth J, Roussos A, Zafeiriou S, Ponniah A, Dunaway D. A 3D morphable model learnt from 10,000 faces. In: 2016 IEEE Conference
                   on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, USA. IEEE; 2016. pp. 5543-52.  DOI
               58.      Dai H, Pears N, Smith W, Duncan C. A 3D morphable model of craniofacial shape and texture variation. In: 2017 IEEE International
                   Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy. IEEE; 2017. pp. 3104-12.  DOI
               59.      Goh GD, Sing SL, Yeong WY. A review on machine learning in 3D printing: applications, potential, and challenges. Artif Intell Rev
                   2021;54:63-94.  DOI
               60.      Menon A, Póczos B, Feinberg AW, Washburn NR. Optimization of silicone 3D printing with hierarchical machine learning. 3D Print
                   Addit Manuf 2019;6:181-9.  DOI
               61.      Conev A, Litsa EE, Perez MR, Diba M, Mikos AG, Kavraki LE. Machine learning-guided three-dimensional printing of tissue
                   engineering scaffolds. Tissue Eng Part A 2020;26:1359-68.  DOI  PubMed  PMC
               62.      Chae MP, Hunter-Smith DJ, Spychal RT, Rozen WM. 3D volumetric analysis for planning breast reconstructive surgery. Breast
                   Cancer Res Treat 2014;146:457-60.  DOI  PubMed
               63.      Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for
                   cochlear implant patients. Nat Commun 2021;12:6260.  DOI  PubMed  PMC
               64.      Asghari A, O’Connor MJ, Attalla P, et al. Game changers: plastic and reconstructive surgery innovations of the last 100 years. Plast
                   Reconstr Surg Glob Open 2023;11:e5209.  DOI  PubMed  PMC
               65.      Lao WWK, Hsieh TY, Ramirez AE. Differences and similarities between eastern and western rhinoplasty: features and proposed
                   algorithms. Ann Plast Surg 2021;86:S259-64.  DOI  PubMed  PMC
               66.      Mir MA, Maurya R. Precision and progress: machine learning advancements in plastic surgery. Cureus 2023;15:e41952.  DOI
                   PubMed  PMC
               67.      Pool C, Moroco A, Lighthall JG. Utilizing virtual surgical planning and patient-specific cutting guides in microtia repair with
                   autologous costal cartilage graft. Plast Reconstr Surg 2024;154:569e-72e.  DOI  PubMed
               68.      O’Sullivan S, Leonard S, Holzinger A, et al. Operational framework and training standard requirements for AI empowered robotic
                   surgery. Int J Med Robot 2020;16:1-13.  DOI  PubMed
               69.      Koçak B, Cuocolo R, dos Santos DP, Stanzione A, Ugga L. Must-have qualities of clinical research on artificial intelligence and
                   machine learning. Balkan Med J 2023;40:3-12.  DOI  PubMed  PMC
   47   48   49   50   51   52   53   54   55   56   57