Page 115 - Read Online
P. 115
Page 157 Shen et al. Art Int Surg. 2025;5:150-9 https://dx.doi.org/10.20517/ais.2024.71
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Roy N, Downes MH, Ibelli T, et al. The psychological impacts of post-mastectomy breast reconstruction: a systematic review. Ann
Breast Surg. 2024;8:19-19. DOI PubMed PMC
2. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast. 2020;50:19-24.
DOI PubMed PMC
3. Lim B, Cevik J, Seth I, et al. Evaluating artificial intelligence's role in teaching the reporting and interpretation of computed
tomographic angiography for preoperative planning of the deep inferior epigastric artery perforator flap. JPRAS Open. 2024;40:273-
85. DOI PubMed PMC
4. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction
model for flap failure in microvascular breast reconstruction. Ann Surg Oncol. 2020;27:3466-75. DOI PubMed
5. Chen W, Lu Z, You L, Zhou L, Xu J, Chen K. Artificial intelligence-based multimodal risk assessment model for surgical site
infection (AMRAMS): development and validation study. JMIR Med Inform. 2020;8:e18186. DOI
6. Chartier C, Watt A, Lin O, Chandawarkar A, Lee J, Hall-Findlay E. BreastGAN: artificial intelligence-enabled breast augmentation
simulation. Aesthet Surg J Open Forum. 2022;4:ojab052. DOI PubMed PMC
7. La Padula S, Pensato R, D'Andrea F, et al. Assessment of patient satisfaction using a new augmented reality simulation software for
breast augmentation: a prospective study. J Clin Med. 2022;11:3464. DOI PubMed PMC
8. Hammond DC, Kim K, Bageris MH, Chaudhry A. Use of three-dimensional imaging to assess the effectiveness of volume as a critical
variable in breast implant selection. Plast Reconstr Surg. 2022;149:70-9. DOI PubMed
9. Kwong JW, Tijerina JD, Choi S, et al. Assessing the accuracy of a 3-dimensional surface imaging system in breast volume estimation.
Ann Plast Surg. 2020;84:S311-7. DOI
10. Amini S, Kersten-Oertel M. Augmented reality mastectomy surgical planning prototype using the HoloLens template for healthcare
technology letters. Healthc Technol Lett. 2019;6:261-5. DOI PubMed PMC
11. Stern CS, Plotsker EL, Rubenstein R, et al. Three-dimensional surface analysis for preoperative prediction of breast volume: a
validation study. Plast Reconstr Surg. 2023;152:1153-62. DOI PubMed PMC
12. Vles MD, Terng NCO, Zijlstra K, Mureau MAM, Corten EML. Virtual and augmented reality for preoperative planning in plastic
surgical procedures: a systematic review. J Plast Reconstr Aesthet Surg. 2020;73:1951-9. DOI PubMed
13. Shafarenko MS, Catapano J, Hofer SOP, Murphy BD. The role of augmented reality in the next phase of surgical education. Plast
Reconstr Surg Glob Open. 2022;10:e4656. DOI PubMed PMC
14. Sacks JM, Nguyen AT, Broyles JM, Yu P, Valerio IL, Baumann DP. Near-infrared laser-assisted indocyanine green imaging for
optimizing the design of the anterolateral thigh flap. Eplasty. 2012;12:e30. PubMed PMC
15. Singaravelu A, Dalli J, Potter S, Cahill RA. Artificial intelligence for optimum tissue excision with indocyanine green fluorescence
angiography for flap reconstructions: proof of concept. JPRAS Open. 2024;41:389-93. DOI PubMed PMC
16. DeFazio MV, Arribas EM, Ahmad FI, et al. Application of three-dimensional printed vascular modeling as a perioperative guide to
perforator mapping and pedicle dissection during abdominal flap harvest for breast reconstruction. J Reconstr Microsurg.
2020;36:325-38. DOI
17. Meier EL, Ulrich DJO, Hummelink S. Projected augmented reality in DIEP flap breast reconstruction: projecting perforators on the
skin using dynamic infrared thermography. J Plast Reconstr Aesthet Surg. 2024;94:83-90. DOI PubMed
18. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications.
Bioengineering. 2023;10:1435. DOI PubMed PMC
19. De La Hoz EC, Verstockt J, Verspeek S, et al. Automated thermographic detection of blood vessels for DIEP flap reconstructive
surgery. Int J Comput Assist Radiol Surg. 2024;19:1733-41. DOI
20. Saxena E. Deep learning for personalized preoperative planning of microsurgical free tissue transfers. In: Sycara K, Honavar V, Spaan
M, editors. Proceedings of the 36th AAAI Conference on Artificial Intelligence; 2022 Feb 22-Mar 1; Vancouver, Canada. AAAI Press;
2022. p. 13140-1. DOI
21. AI-enabled segmentation | materialise mimics. Available from: https://www.materialise.com/en/healthcare/mimics-innovation-suite/ai-
enabled-segmentation. [Last accessed on 30 Dec 2024].
22. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP
flap breast reconstruction. Plast Reconstr Surg Glob Open. 2023;11:e5282. DOI PubMed PMC