Page 107 - Read Online
P. 107

Page 434                                                               Roy et al. Art Int Surg 2024;4:427-34  https://dx.doi.org/10.20517/ais.2024.69

               33.      Watson J, Hutyra CA, Clancy SM, et al. Overcoming barriers to the adoption and implementation of predictive modeling and machine
                   learning in clinical care: what can we learn from US academic medical centers? JAMIA Open 2020;3:167-72.  DOI  PubMed  PMC
               34.      Salehinejad H, Kitamura J, Ditkofsky N, et al. A real-world demonstration of machine learning generalizability in the detection of
                   intracranial hemorrhage on head computerized tomography. Sci Rep 2021;11:17051.  DOI  PubMed  PMC
               35.      Mechelli A, Vieira S. From models to tools: clinical translation of machine learning studies in psychosis. NPJ Schizophr 2020;6:4.
                   DOI  PubMed  PMC
               36.      Patel R, Oduola S, Callard F, et al. What proportion of patients with psychosis is willing to take part in research? A mental health
                   electronic case register analysis. BMJ Open 2017;7:e013113.  DOI  PubMed  PMC
               37.      Collaborative learning without sharing data. Nat Mach Intell 2021;3:459.  DOI
               38.      Antoniadi AM, Du Y, Guendouz Y, et al. Current challenges and future opportunities for XAI in machine learning-based clinical
                   decision support systems: a systematic review. Appl Sci 2021;11:5088.  DOI
               39.      Bussone A, Stumpf S, O’Sullivan D. The role of explanations on trust and reliance in clinical decision support systems. In: 2015
                   International Conference on Healthcare Informatics; 2015 Oct 21-23; Dallas, USA. IEEE; 2015. pp. 160-9.  DOI
               40.      Amann J, Blasimme A, Vayena E, Frey D, Madai VI; Precise4Q consortium. Explainability for artificial intelligence in healthcare: a
                   multidisciplinary perspective. BMC Med Inform Decis Mak 2020;20:310.  DOI  PubMed  PMC
               41.      Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities
                   and challenges toward responsible AI. Inform Fusion 2020;58:82-115.  DOI
               42.      Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy
                   2020;23:18.  DOI  PubMed  PMC
               43.      Accuracy. Artificial Intelligence Episode 1 - overview of leading artificial intelligence clusters around the globe. Available from:
                   https://www.accuracy.com/perspectives/overview-leading-artificial-intelligence-clusters-around-globe. [Last accessed on 5 Dec 2024].
               44.      McKinsey and Company. Transforming healthcare with AI: the impact on the workforce and organizations. Available from: https://
                   www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/transforming-healthcare-with-ai. [Last accessed on 5 Dec
                   2024].
   102   103   104   105   106   107   108   109   110   111   112