Page 106 - Read Online
P. 106

Roy et al. Art Int Surg 2024;4:427-34  https://dx.doi.org/10.20517/ais.2024.69                                                              Page 433

                   PubMed
               4.       Mak ML, Al-Shaqsi SZ, Phillips J. Prevalence of machine learning in craniofacial surgery. J Craniofac Surg 2020;31:898-903.  DOI
                   PubMed
               5.       Jarvis T, Thornburg D, Rebecca AM, Teven CM. Artificial intelligence in plastic surgery: current applications, future directions, and
                   ethical implications. Plast Reconstr Surg Glob Open 2020;8:e3200.  DOI  PubMed  PMC
               6.       Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in
                   surgical innovation. Plast Reconstr Surg 2016;137:890e-7e.  DOI  PubMed
               7.       Zhu VZ, Tuggle CT, Au AF. Promise and limitations of big data research in plastic surgery. Ann Plast Surg 2016;76:453-8.  DOI
                   PubMed
               8.       Kim YJ, Kelley BP, Nasser JS, Chung KC. Implementing precision medicine and artificial intelligence in plastic surgery: concepts and
                   future prospects. Plast Reconstr Surg Glob Open 2019;7:e2113.  DOI  PubMed  PMC
               9.       Murphy DC, Saleh DB. Artificial intelligence in plastic surgery: what is it? Where are we now? What is on the horizon? Ann R Coll
                   Surg Engl 2020;102:577-80.  DOI  PubMed  PMC
               10.      Dhillon H, Chaudhari PK, Dhingra K, et al. Current applications of artificial intelligence in cleft care: a scoping review. Front Med
                   2021;8:676490.  DOI  PubMed  PMC
               11.      Wu J, Tse R, Shapiro LG. Learning to rank the severity of unrepaired cleft lip nasal deformity on 3D mesh data. Proc IAPR Int Conf
                   Pattern Recogn 2014;2014:460-4.  DOI  PubMed  PMC
               12.      Maier A, Hönig F, Bocklet T, et al. Automatic detection of articulation disorders in children with cleft lip and palate. J Acoust Soc Am
                   2009;126:2589-602.  DOI  PubMed
               13.      Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial intelligence: applications in orthognathic surgery. J Stomatol
                   Oral Maxillofac Surg 2019;120:347-54.  DOI  PubMed
               14.      Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of
                   orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg 2019;48:77-83.  DOI  PubMed
               15.      Du W, Bi W, Liu Y, Zhu Z, Tai Y, Luo E. Machine learning-based decision support system for orthognathic diagnosis and treatment
                   planning. BMC Oral Health 2024;24:286.  DOI  PubMed  PMC
               16.      Qamar A, Bangi SF, Barve R. Artificial intelligence applications in diagnosing and managing non-syndromic craniosynostosis: a
                   comprehensive review. Cureus 2023;15:e45318.  DOI  PubMed  PMC
               17.      Mashouri P, Skreta M, Phillips J, et al. 3D photography based neural network craniosynostosis triaging system. In: Proceedings of the
                   Machine Learning for Health NeurIPS Workshop PMLR; 2020. pp.226-37. Available from: https://proceedings.mlr.press/v136/
                   mashouri20a.html. [Last accessed on 5 Dec 2024].
               18.      Pham TD, Holmes SB, Coulthard P. A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging. Front
                   Artif Intell 2023;6:1278529.  DOI  PubMed  PMC
               19.      Wang HC, Wang SC, Yan JL, Ko LW. Artificial intelligence model trained with sparse data to detect facial and cranial bone fractures
                   from head CT. J Digit Imaging 2023;36:1408-18.  DOI  PubMed  PMC
               20.      Moon G, Lee D, Kim WJ, Kim Y, Sung KY, Choi HS. Very fast, high-resolution aggregation 3D detection CAM to quickly and
                   accurately find facial fracture areas. Comput Methods Programs Biomed 2024;256:108379.  DOI
               21.      Moon G, Kim S, Kim W, Kim Y, Jeong Y, Choi H. Computer aided facial bone fracture diagnosis (CA-FBFD) system based on object
                   detection model. IEEE Access 2022;10:79061-70.  DOI
               22.      Wang X, Xu Z, Tong Y, et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network.
                   Clin Oral Investig 2022;26:4593-601.  DOI
               23.      Roy M, Corkum JP, Shah PS, et al. Effectiveness and safety of the use of gracilis muscle for dynamic smile restoration in facial
                   paralysis: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2019;72:1254-64.  DOI
               24.      Boonipat T, Asaad M, Lin J, Glass GE, Mardini S, Stotland M. Using artificial intelligence to measure facial expression following
                   facial reanimation surgery. Plast Reconstr Surg 2020;146:1147-50.  DOI  PubMed
               25.      Dusseldorp JR, Guarin DL, van Veen MM, Miller M, Jowett N, Hadlock TA. Automated spontaneity assessment after smile
                   reanimation: a machine learning approach. Plast Reconstr Surg 2022;149:1393-402.  DOI  PubMed
               26.      Sendak MP, Gao M, Brajer N, Balu S. Presenting machine learning model information to clinical end users with model facts labels.
                   NPJ Digit Med 2020;3:41.  DOI  PubMed  PMC
               27.      Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20-3.  DOI  PubMed
               28.      Knight W. The dark secret at the heart of AI. Available from: https://www.technologyreview.com/2017/04/11/5113/the-dark-secret-at-
                   the-heart-of-ai/. [Last accessed on 5 Dec 2024].
               29.      Buolamwini J, Gebru T. Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of the
                   1st Conference on Fairness, Accountability and Transparency. PMLR; 2018. pp. 77-91. Available from: https://proceedings.mlr.press/
                   v81/buolamwini18a.html?mod=article_inline&ref=akusion-ci-shi-dai-bizinesumedeia. [Last accessed on 5 Dec 2024].
               30.      Kish LJ, Topol EJ. Unpatients-why patients should own their medical data. Nat Biotechnol 2015;33:921-4.  DOI  PubMed
               31.      Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics
                   2021;22:122.  DOI  PubMed  PMC
               32.      Brundage M, Avin S, Clark J, et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation. ArXiv.
                   [Preprint.] Dec 1, 2024 [accessed 2024 Dec 5].Available from: https://doi.org/10.48550/arXiv.1802.07228.
   101   102   103   104   105   106   107   108   109   110   111