Page 106 - Read Online
P. 106
Roy et al. Art Int Surg 2024;4:427-34 https://dx.doi.org/10.20517/ais.2024.69 Page 433
PubMed
4. Mak ML, Al-Shaqsi SZ, Phillips J. Prevalence of machine learning in craniofacial surgery. J Craniofac Surg 2020;31:898-903. DOI
PubMed
5. Jarvis T, Thornburg D, Rebecca AM, Teven CM. Artificial intelligence in plastic surgery: current applications, future directions, and
ethical implications. Plast Reconstr Surg Glob Open 2020;8:e3200. DOI PubMed PMC
6. Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in
surgical innovation. Plast Reconstr Surg 2016;137:890e-7e. DOI PubMed
7. Zhu VZ, Tuggle CT, Au AF. Promise and limitations of big data research in plastic surgery. Ann Plast Surg 2016;76:453-8. DOI
PubMed
8. Kim YJ, Kelley BP, Nasser JS, Chung KC. Implementing precision medicine and artificial intelligence in plastic surgery: concepts and
future prospects. Plast Reconstr Surg Glob Open 2019;7:e2113. DOI PubMed PMC
9. Murphy DC, Saleh DB. Artificial intelligence in plastic surgery: what is it? Where are we now? What is on the horizon? Ann R Coll
Surg Engl 2020;102:577-80. DOI PubMed PMC
10. Dhillon H, Chaudhari PK, Dhingra K, et al. Current applications of artificial intelligence in cleft care: a scoping review. Front Med
2021;8:676490. DOI PubMed PMC
11. Wu J, Tse R, Shapiro LG. Learning to rank the severity of unrepaired cleft lip nasal deformity on 3D mesh data. Proc IAPR Int Conf
Pattern Recogn 2014;2014:460-4. DOI PubMed PMC
12. Maier A, Hönig F, Bocklet T, et al. Automatic detection of articulation disorders in children with cleft lip and palate. J Acoust Soc Am
2009;126:2589-602. DOI PubMed
13. Bouletreau P, Makaremi M, Ibrahim B, Louvrier A, Sigaux N. Artificial intelligence: applications in orthognathic surgery. J Stomatol
Oral Maxillofac Surg 2019;120:347-54. DOI PubMed
14. Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence to assess the impact of
orthognathic treatment on facial attractiveness and estimated age. Int J Oral Maxillofac Surg 2019;48:77-83. DOI PubMed
15. Du W, Bi W, Liu Y, Zhu Z, Tai Y, Luo E. Machine learning-based decision support system for orthognathic diagnosis and treatment
planning. BMC Oral Health 2024;24:286. DOI PubMed PMC
16. Qamar A, Bangi SF, Barve R. Artificial intelligence applications in diagnosing and managing non-syndromic craniosynostosis: a
comprehensive review. Cureus 2023;15:e45318. DOI PubMed PMC
17. Mashouri P, Skreta M, Phillips J, et al. 3D photography based neural network craniosynostosis triaging system. In: Proceedings of the
Machine Learning for Health NeurIPS Workshop PMLR; 2020. pp.226-37. Available from: https://proceedings.mlr.press/v136/
mashouri20a.html. [Last accessed on 5 Dec 2024].
18. Pham TD, Holmes SB, Coulthard P. A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging. Front
Artif Intell 2023;6:1278529. DOI PubMed PMC
19. Wang HC, Wang SC, Yan JL, Ko LW. Artificial intelligence model trained with sparse data to detect facial and cranial bone fractures
from head CT. J Digit Imaging 2023;36:1408-18. DOI PubMed PMC
20. Moon G, Lee D, Kim WJ, Kim Y, Sung KY, Choi HS. Very fast, high-resolution aggregation 3D detection CAM to quickly and
accurately find facial fracture areas. Comput Methods Programs Biomed 2024;256:108379. DOI
21. Moon G, Kim S, Kim W, Kim Y, Jeong Y, Choi H. Computer aided facial bone fracture diagnosis (CA-FBFD) system based on object
detection model. IEEE Access 2022;10:79061-70. DOI
22. Wang X, Xu Z, Tong Y, et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network.
Clin Oral Investig 2022;26:4593-601. DOI
23. Roy M, Corkum JP, Shah PS, et al. Effectiveness and safety of the use of gracilis muscle for dynamic smile restoration in facial
paralysis: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2019;72:1254-64. DOI
24. Boonipat T, Asaad M, Lin J, Glass GE, Mardini S, Stotland M. Using artificial intelligence to measure facial expression following
facial reanimation surgery. Plast Reconstr Surg 2020;146:1147-50. DOI PubMed
25. Dusseldorp JR, Guarin DL, van Veen MM, Miller M, Jowett N, Hadlock TA. Automated spontaneity assessment after smile
reanimation: a machine learning approach. Plast Reconstr Surg 2022;149:1393-402. DOI PubMed
26. Sendak MP, Gao M, Brajer N, Balu S. Presenting machine learning model information to clinical end users with model facts labels.
NPJ Digit Med 2020;3:41. DOI PubMed PMC
27. Castelvecchi D. Can we open the black box of AI? Nature 2016;538:20-3. DOI PubMed
28. Knight W. The dark secret at the heart of AI. Available from: https://www.technologyreview.com/2017/04/11/5113/the-dark-secret-at-
the-heart-of-ai/. [Last accessed on 5 Dec 2024].
29. Buolamwini J, Gebru T. Gender shades: intersectional accuracy disparities in commercial gender classification. In: Proceedings of the
1st Conference on Fairness, Accountability and Transparency. PMLR; 2018. pp. 77-91. Available from: https://proceedings.mlr.press/
v81/buolamwini18a.html?mod=article_inline&ref=akusion-ci-shi-dai-bizinesumedeia. [Last accessed on 5 Dec 2024].
30. Kish LJ, Topol EJ. Unpatients-why patients should own their medical data. Nat Biotechnol 2015;33:921-4. DOI PubMed
31. Murdoch B. Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Med Ethics
2021;22:122. DOI PubMed PMC
32. Brundage M, Avin S, Clark J, et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation. ArXiv.
[Preprint.] Dec 1, 2024 [accessed 2024 Dec 5].Available from: https://doi.org/10.48550/arXiv.1802.07228.