Page 24 - Read Online
P. 24
Liu et al. Art Int Surg 2024;4:92-108 https://dx.doi.org/10.20517/ais.2024.19 Page 108
openaccess.thecvf.com/content_CVPR_2019/html/Pavlakos_Expressive_Body_Capture_3D_Hands_Face_and_Body_From_a_
CVPR_2019_paper.html. [Last accessed on 21 Jun 2024].
22. Mentis HM, Chellali A, Manser K, Cao CG, Schwaitzberg SD. A systematic review of the effect of distraction on surgeon
performance: directions for operating room policy and surgical training. Surg Endosc 2016;30:1713-24. DOI PubMed PMC
23. Tolstikhin IO, Houlsby N, Kolesnikov A, et al. MLP-Mixer: an all-MLP architecture for vision. In: Advances in Neural Information
Processing Systems 34 (NeurIPS 2021). Available from: https://proceedings.neurips.cc/paper/2021/hash/
cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html. [Last accessed on 21 Jun 2024].
24. Choe J, Park C, Rameau F, Park J, Kweon IS. PointMixer: MLP-mixer for point cloud understanding. In: Avidan S, Brostow G, Cissé
M, Farinella GM, Hassner T, editors. Computer Vision - ECCV 2022. Cham: Springer; 2022. pp. 620-40. DOI
25. Ekambaram V, Jati A, Nguyen N, Sinthong P, Kalagnanam J. TSMixer: lightweight MLP-mixer model for multivariate time series
forecasting. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM; 2023. pp. 459-
469. DOI
26. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv. [Preprint.] Dec 22, 2014 [accessed 2024 Jun 21]. Available
from: https://arxiv.org/abs/1412.6980.
27. Mehta D, Rhodin H, Casas D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision. arXiv.
[Preprint.] Nov 29, 2016 [accessed 2024 Jun 21]. Available from: https://arxiv.org/abs/1611.09813.
28. Moon G, Choi H, Lee KM. Accurate 3D hand pose estimation for whole-body 3D human mesh estimation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022. pp. 2308-17. Available from: https://openaccess.
thecvf.com/content/CVPR2022W/ABAW/html/Moon_Accurate_3D_Hand_Pose_Estimation_for_Whole-Body_3D_Human_Mesh_
CVPRW_2022_paper.html. [Last accessed on 21 Jun 2024].
29. Zhang X, Li Q, Mo H, Zhang W, Zheng W. End-to-end hand mesh recovery from a monocular rgb image. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2019. pp. 2354-64. Available from: https://openaccess.thecvf.com/
content_ICCV_2019/html/Zhang_End-to-End_Hand_Mesh_Recovery_From_a_Monocular_RGB_Image_ICCV_2019_paper.html.
[Last accessed on 21 Jun 2024].
30. Doyen B, Gordon L, Soenens G, et al. Introduction of a surgical Black Box system in a hybrid angiosuite: challenges and
opportunities. Phys Med 2020;76:77-84. DOI PubMed
31. Garrow CR, Kowalewski KF, Li L, et al. Machine learning for surgical phase recognition: a systematic review. Ann Surg
2021;273:684-93. DOI PubMed
32. Hardie JA, Hunn D, Mitchell TE, Brennan PA. Patient, Procedure, People (PPP): recognising and responding to intraoperative critical
events. Ann R Coll Surg Engl 2022;104:409-13. DOI PubMed PMC
33. Fasting S, Gisvold SE. Serious intraoperative problems - a five-year review of 83,844 anesthetics. Can J Anaesth 2002;49:545-53.
DOI PubMed
34. Yu X, Xiao H, Wang R, Huang Y. Prediction of massive blood loss in scoliosis surgery from preoperative variables. Spine
2013;38:350-5. DOI PubMed
35. Chadebecq F, Vasconcelos F, Mazomenos E, Stoyanov D. Computer vision in the surgical operating room. Visc Med 2020;36:456-62.
DOI PubMed PMC
36. Nasri BN, Mitchell JD, Jackson C, Nakamoto K, Guglielmi C, Jones DB. Distractions in the operating room: a survey of the healthcare
team. Surg Endosc 2023;37:2316-25. DOI PubMed PMC

