Page 220 - Read Online
P. 220

Cheng et al. Vessel Plus 22020;4:17  I  http://dx.doi.org/10.20517/2574-1209.2020.08                                                Page 13 of 15

                   2014;193:3378-87.
               61.  Gasser O, Schifferli JA. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood
                   2004;104:2543-8.
               62.  Rhys HI, Dell’Accio F, Pitzalis C, Moore A, Norling LV, et al. Neutrophil microvesicles from healthy control and rheumatoid arthritis
                   patients prevent the inflammatory activation of macrophages. EBioMedicine 2018;29:60-9.
               63.  Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, et al. Endotoxin-induced monocytic microparticles have contrasting effects on
                   endothelial inflammatory responses. PLoS One 2014;9:e91597.
               64.  Riggle BA, Manglani M, Maric D, Johnson KR, Lee MH, et al. CD8+ T cells target cerebrovasculature in children with cerebral malaria.
                   J Clin Invest 2020;130:1128-38.
               65.  Poh CM, Howland SW, Grotenbreg GM, Rénia L. Damage to the blood-brain barrier during experimental cerebral malaria results from
                   synergistic effects of CD8+ T cells with different specificities. Infect Immun 2014;82:4854-64.
               66.  Swanson PA, Hart GT, Russo MV, Nayak D, Yazew T, et al. CD8+ T cells induce fatal brainstem pathology during cerebral malaria via
                   luminal antigen-specific engagement of brain vasculature. PLoS Pathog 2016;12:e1006022.
               67.  Combes V, Souza JBD, Rénia L, Hunt NH, Grau GE. Cerebral malaria: which parasite? Which model? Drug Discov Today Dis Models
                   2005;2:141-7.
               68.  Craig AG, Grau GE, Janse C, Kazura JW, Milner D, et al. The role of animal models for research on severe malaria. PLoS Pathog
                   2012;8:e1002401.
               69.  de Souza JB, Hafalla JCR, Riley EM, Couper KN. Cerebral malaria: why experimental murine models are required to understand the
                   pathogenesis of disease. Parasitology 2010;137:755-72.
               70.  El-Assaad F, Combes V, Grau GE. Experimental models of microvascular immunopathology: the example of cerebral malaria. J
                   Neuroinfect Dis 2014;5.
               71.  Riley EM, Couper KN, Helmby H, Hafalla JCR, de Souza JB, et al. Neuropathogenesis of human and murine malaria. Trends Parasitol
                   2010;26:277-8.
               72.  Amante FH, Stanley AC, Randall LM, Zhou Y, Haque A, et al. A role for natural regulatory T cells in the pathogenesis of experimental
                   cerebral malaria. Am J Pathol 2007;171:548-59.
               73.  Claser C, Malleret B, Gun SY, Wong AYW, Chang ZW, et al. CD8+ T cells and IFN-γ mediate the time-dependent accumulation of
                   infected red blood cells in deep organs during experimental cerebral malaria. PLoS One 2011;6:e18720.
               74.  Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, et al. Murine malaria parasite sequestration: CD36 is the major
                   receptor, but cerebral pathology is unlinked to sequestration. Proc Natl Acad Sci U S A 2005;102:11468-73.
               75.  Strangward P, Haley MJ, Shaw TN, Schwartz JM, Greig R, et al. A quantitative brain map of experimental cerebral malaria pathology.
                   PLoS Pathog 2017;13:e1006267.
               76.  Combes V, Coltel N, Alibert M, van Eck M, Raymond C, et al. ABCA1 gene deletion protects against cerebral malaria: potential
                   pathogenic role of microparticles in neuropathology. Am J Pathol 2005;166:295-302.
               77.  El-Assaad F, Wheway J, Hunt NH, Grau GER, Combes V. Production, fate and pathogenicity of plasma microparticles in murine cerebral
                   malaria. PLoS Pathog 2014;10:e1003839.
               78.  Penet MF, Abou-Hamdan M, Coltel N, Cornille E, Grau GE, et al. Protection against cerebral malaria by the low-molecular-weight thiol
                   pantethine. Proc Natl Acad Sci U S A 2008;105:1321-6.
               79.  Kuhn SM, McCarthy AE. Paediatric malaria: what do paediatricians need to know? Paediatr Child Health 2006;11:349-54.
               80.  White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, et al. Malaria. Lancet 2014;383:723-35.
               81.  Shrivastava SK, Dalko E, Delcroix-Genete D, Herbert F, Cazenave PA, et al. Uptake of parasite-derived vesicles by astrocytes and
                   microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia 2017;65:75-92.
               82.  Martín-Jaular L, de Menezes-Neto A, Monguió-Tortajada M, Elizalde-Torrent A, Díaz-Varela M, et al. Spleen-dependent immune
                   protection elicited by CpG adjuvanted reticulocyte-derived exosomes from malaria infection is associated with changes in T cell subsets’
                   distribution. Front Cell Dev Biol 2016;4:131.
               83.  Nantakomol D, Chimma P, Day NP, Dondorp AM, Combes V, et al. Quantitation of cell-derived microparticles in plasma using flow rate
                   based calibration. Southeast Asian J Trop Med Public Health 2008;39:146-53.
               84.  Babatunde KA, Yesodha Subramanian B, Ahouidi AD, Martinez Murillo P, Walch M, et al. Role of extracellular vesicles in cellular cross
                   talk in malaria. Front Immunol 2020;11:22.
               85.  Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, et al. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and
                   therapeutic approaches. Front Cell Infect Microbiol 2015;5:75.
               86.  Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, et al. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar
                   J 2018;17:47.
               87.  Adukpo S, Kusi KA, Ofori MF, Tetteh JKA, Amoako-Sakyi D, et al. High plasma levels of soluble intercellular adhesion molecule
                   (ICAM)-1 are associated with cerebral malaria. PLoS One 2013;8:e84181.
               88.  Casals-Pascual C, Idro R, Gicheru N, Gwer S, Kitsao B, et al. High levels of erythropoietin are associated with protection against
                   neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 2008;105:2634-9.
               89.  Conroy AL, Lafferty EI, Lovegrove FE, Krudsood S, Tangpukdee N, et al. Whole blood angiopoietin-1 and -2 levels discriminate cerebral
                   and severe (non-cerebral) malaria from uncomplicated malaria. Malar J 2009;8:295.
               90.  Thakur K, Vareta J, Carson K, Taylor T, Sullivan D. Performance of cerebrospinal fluid (CSF) plasmodium falciparum histidine-rich
                   protein-2 (pfHRP-2) in prediction of death in cerebral malaria (I10-2.005) 2014. Available from https://n.neurology.org/content/82/10_
   215   216   217   218   219   220   221   222   223   224   225