Page 42 - Read Online
P. 42
Page 12 of 14 Orekhov et al. Vessel Plus 2019;3:3 I http://dx.doi.org/10.20517/2574-1209.2018.80
Biophys Acta 1987;928:251-8.
12. Virella G, Wilson K, Elkes J, Hammad SM, Rajab HA, et al. Immune complexes containing malondialdehyde (MDA) LDL induce
apoptosis in human macrophages. Clin Immunol 2018;187:1-9.
13. Sánchez-Quesada JL, Villegas S, Ordóñez-Llanos J. Electronegative low-density lipoprotein. A link between apolipoprotein B
misfolding, lipoprotein aggregation and proteoglycan binding. Curr Opin Lipidol 2012;23:479-86.
14. Orekhov AN, Andreeva ER, Bobryshev YV. Cellular mechanisms of human atherosclerosis: role of cell-to-cell communications in
subendothelial cell functions. Tissue Cell 2016;48:25-34.
15. Orekhov AN, Oishi Y, Nikiforov NG, Zhelankin AV, Dubrovsky L, et al. Modified LDL particles activate inflammatory pathways in
monocyte-derived macrophages: transcriptome analysis. Curr Pharm Des 2018;24:3143-51.
16. Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, et al. Dual signaling evoked by oxidized LDLs in vascular cells. Free
Radic Biol Med 2017;106:118-33.
17. Jongstra-Bilen J, Zhang CX, Wisnicki T, Li MK, White-Alfred S, et al. Oxidized low-density lipoprotein loading of macrophages
downregulates TLR-Induced proinflammatory responses in a gene-specific and temporal manner through transcriptional control. J
Immunol 2017;199:2149-57.
18. de la Paz Sánchez-Martínez M, Blanco-Favela F, Mora-Ruiz MD, Chávez-Rueda AK, Bernabe-García M, et al. IL-17-differentiated
macrophages secrete pro-inflammatory cytokines in response to oxidized low-density lipoprotein. Lipids Health Dis 2017;16:196.
19. Orekhov AN, Ivanova EA. Cellular models of atherosclerosis and their implication for testing natural substances with anti-
atherosclerotic potential. Phytomedicine 2016;23:1190-7.
20. Singh RK, Haka AS, Brumfield A, Grosheva I, Bhardwaj P, et al. Ceramide activation of RhoA/Rho kinase impairs actin polymerization
during aggregated LDL catabolism. J Lipid Res 2017;58:1977-87.
21. Guo K, Hu L, Xi D, Zhao J, Liu J, et al. PSRC1 overexpression attenuates atherosclerosis progression in apoE(-/-) mice by modulating
cholesterol transportation and inflammation. J Mol Cell Cardiol 2018;116:69-80.
22. Liu XX, Zhang XW, Wang K, Wang XY, Ma WL, et al. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/
ABCG1 and inhibition of NFκB activity in macrophages. Toxicol Appl Pharmacol 2018;341:56-63.
23. Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: involvement of Nrf2 antioxidant redox signaling in macrophage
foam cells formation. Int J Mol Sci 2017; doi: 10.3390/ijms18112336.
24. Yang Y, Li X, Peng L, An L, Sun N, et al. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell
formation via a peroxiredoxin 1 dependent pathway. Biochim Biophys Acta Mol Basis Dis 2018;1864:882-90.
25. Liu Z, Zhu H, Dai X, Wang C, Ding Y, et al. Macrophage liver kinase B1 inhibits foam cell formation and atherosclerosis. Circ Res
2017;121:1047-57.
26. Srikakulapu P, Upadhye A, Rosenfeld SM, Marshall MA, McSkimming C, et al. Perivascular adipose tissue harbors atheroprotective
IgM-producing B cells. Front Physiol 2017;8:719.
27. Srikakulapu P, McNamara CA. B cells and atherosclerosis. Am J Physiol Heart Circ Physiol 2017;312:H1060-7.
28. Yan D, He Y, Dai J, Yang L, Wang X, et al. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-
like cells and decrease foam cell formation. Biosci Rep 2017; doi: 10.1042/BSR20170002.
29. Maier A, Wu H, Cordasic N, Oefner P, Dietel B, et al. Hypoxia-inducible protein 2 Hig2/Hilpda mediates neutral lipid accumulation in
macrophages and contributes to atherosclerosis in apolipoprotein E-deficient mice. FASEB J 2017;31:4971-84.
30. Chen L, Zhang J, Deng X, Liu Y, Yang X, et al. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by
blocking the expression of SRBI. Biochem Biophys Res Commun 2017;491:587-94.
31. Brotman DJ, Walker E, Lauer MS, O’Brien RG. In search of fewer independent risk factors. Arch Intern Med 2005;165:138-45.
32. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, et al. 2013 ACC/AHA guideline on the treatment of blood
cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart
Association Task Force on Practice Guidelines. Circulation 2014;129:S1-45.
33. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, et al. 2016 ESC/EAS guidelines for the management of
dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European
Atherosclerosis Society (EAS) developed with the special contribution of the European Association for Cardiovascular Prevention &
Rehabilitation (EACPR). Atherosclerosis 2016;253:281-344.
34. Graham IM, Catapano AL, Wong ND. Current guidelines on prevention with a focus on dyslipidemias. Cardiovasc Diagn Ther
2017;7(Suppl 1):S4-10.
35. Kooter AJ, Kostense PJ, Groenewold J, Thijs A, Sattar N, et al. Integrating information from novel risk factors with calculated risks: the
critical impact of risk factor prevalence. Circulation 2011;124:741-5.
36. Ioannidis JP, Tzoulaki I. Minimal and null predictive effects for the most popular blood biomarkers of cardiovascular disease. Circ Res
2012;110:658-62.
37. Gilstrap LG, Wang TJ. Biomarkers and cardiovascular risk assessment for primary prevention: an update. Clin Chem 2012;58:72-82.
38. Tzoulaki I, Siontis KC, Evangelou E, Ioannidis JP. Bias in associations of emerging biomarkers with cardiovascular disease. JAMA
Intern Med 2013;173:664-71.
39. Orekhov AN, Tertov VV, Kabakov AE, Adamova IYu, Pokrovsky SN, et al. Autoantibodies against modified low density lipoprotein.
Nonlipid factor of blood plasma that stimulates foam cell formation. Arterioscler Thromb 1991;11:316-26.
40. Tsimikas S, Miller YI. Oxidative modification of lipoproteins: mechanisms, role in inflammation and potential clinical applications in