Page 29 - Read Online
P. 29
Page 6 of 7 Kosmas et al. Vessel Plus 2019;3:2 I http://dx.doi.org/10.20517/2574-1209.2018.79
7. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl
J Med 2014;371:2383-93.
8. Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms.
Nat Rev Cardiol 2011;8:222-32.
9. Tailleux A, Fruchart JC. HDL heterogeneity and atherosclerosis. Crit Rev Clin Lab Sci 1996;33:163-201.
10. Kosmas CE, Christodoulidis G, Cheng JW, Vittorio TJ, Lerakis S. High-density lipoprotein functionality in coronary artery disease. Am
J Med Sci 2014;347:504-8.
11. Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res 2013;54:2950-63.
12. Rader DJ. Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2006;116:3090-100.
13. Vaisar T, Pennathur S, Green PS, Gharib SA, Hoofnagle AN, et al. Shotgun proteomics implicates protease inhibition and complement
activation in the antiinflammatory properties of HDL. J Clin Invest 2007;117:746-56.
14. Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res 2013;54:2950-63
15. Tölle M, Huang T, Schuchardt M, Jankowski V, Prüfer N, et al. High-density lipoprotein loses its anti-inflammatory capacity by
accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res 2012;94:154-62.
16. Jahangiri A. High-density lipoprotein and the acute phase response. Curr Opin Endocrinol Diabetes Obes 2010;17:156-60.
17. Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, et al. Anti-inflammatory HDL becomes pro-inflammatory
during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest
1995;96:2758-67.
18. Yamamoto K, Isogai Y, Sato H, Taketomi Y, Murakami M. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis:
integration with lipidomics. Anal Bioanal Chem 2011;400:1829-42.
19. Kar S, Patel MA, Tripathy RK, Bajaj P, Suvarnakar UV, et al. Oxidized phospholipid content destabilizes the structure of reconstituted
high density lipoprotein particles and changes their function. Biochim Biophys Acta 2012;1821:1200-10.
20. Kameda T, Ohkawa R, Yano K, Usami Y, Miyazaki A, et al. Effects of myeloperoxidase-induced oxidation on antiatherogenic functions
of high-density lipoprotein. J Lipids 2015;2015:592594.
21. Chen C, Khismatullin DB. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast
cells. PLoS One 2015;10:e0123088.
22. Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, Davidson M, Rysz J, et al. Dysfunctional HDL: a novel important diagnostic and
therapeutic target in cardiovascular disease? Prog Lipid Res 2012;51:314-24.
23. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, et al. A cell-free assay for detecting HDL that is dysfunctional in
preventing the formation of or inactivating oxidized phospholipids. J Lipid Res 2001;42:1308-17.
24. Salazar J, Olivar LC, Ramos E, Chávez-Castillo M, Rojas J, et al. Dysfunctional high-density lipoprotein: an innovative target for
proteomics and lipidomics. Cholesterol 2015;2015:296417.
25. Chait A, Han CY, Oram JF, Heinecke JW. Thematic review series: the immune system and atherogenesis. Lipoprotein-associated
inflammatory proteins: markers or mediators of cardiovascular disease? J Lipid Res 2005;46:389-403.
26. Nobécourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, et al. Defective antioxidative activity of small dense HDL3 particles
in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 2005;48:529-38.
27. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, et al. Glycation impairs high-density lipoprotein function. Diabetologia
2000;43:312-20.
28. Hoang A, Murphy AJ, Coughlan MT, Thomas MC, Forbes JM, et al. Advanced glycation of apolipoprotein A-I impairs its anti-
atherogenic properties. Diabetologia 2007;50:1770-9.
29. Nobécourt E, Tabet F, Lambert G, Puranik R, Bao S, et al. Nonenzymatic glycation impairs the antiinflammatory properties of
apolipoprotein A-I. Arterioscler Thromb Vasc Biol 2010;30:766-72.
30. He BM, Zhao SP, Peng ZY. Effects of cigarette smoking on HDL quantity and function: implications for atherosclerosis. J Cell Biochem
2013;114:2431-6.
31. McMorrow AM, O’Reilly M, Connaughton RM, Carolan E, O’Shea D, et al. Obesity and dietary fat modulate HDL function in
adolescents: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. FASEB J 2016;30:130.
32. Nicholls SJ, Lundman P, Harmer JA, Cutri B, Griffiths KA, et al. Consumption of saturated fat impairs the anti-inflammatory properties
of high-density lipoproteins and endothelial function. J Am Coll Cardiol 2006;48:715-20.
33. van der Steeg WA, Holme I, Boekholdt SM, Larsen ML, Lindahl C, et al. High-density lipoprotein cholesterol, high-density lipoprotein
particle size, and apolipoprotein A-I: significance for cardiovascular risk: the IDEAL and EPIC-Norfolk studies. J Am Coll Cardiol
2008;51:634-42.
34. Qi Y, Fan J, Liu J, Wang W, Wang M, et al. Cholesterol-overloaded HDL particles are independently associated with progression of
carotid atherosclerosis in a cardiovascular disease-free population: a community-based cohort study. J Am Coll Cardiol 2015;65:355-63.
35. Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high
mortality in men and women: two prospective cohort studies. Eur Heart J 2017;38:2478-86.
36. Hirata A, Sugiyama D, Watanabe M, Tamakoshi A, Iso H, et al. Association of extremely high levels of high-density lipoprotein
cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: the EPOCH-JAPAN
study. J Clin Lipidol 2018;12:674-84.
37. Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, et al. Cholesterol efflux capacity, high-density lipoprotein function,