Page 199 - Read Online
P. 199
Page 14 of 15 Levy et al. Vessel Plus 2024;8:4 https://dx.doi.org/10.20517/2574-1209.2023.55
aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 2006;38:343-9. DOI
42. Pannu H, Tran-Fadulu V, Papke CL, et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth
factor 1 and angiotensin II. Hum Mol Genet 2007;16:2453-62. DOI PubMed PMC
43. Harakalova M, van der Smagt J, de Kovel CG, et al. Incomplete segregation of MYH11 variants with thoracic aortic aneurysms and
dissections and patent ductus arteriosus. Eur J Hum Genet 2013;21:487-93. DOI PubMed PMC
44. Wang L, Guo DC, Cao J, et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am J Hum Genet 2010;87:701-
7. DOI PubMed PMC
45. Hannuksela M, Stattin EL, Klar J, et al. A novel variant in MYLK causes thoracic aortic dissections: genotypic and phenotypic
description. BMC Med Genet 2016;17:61. DOI PubMed PMC
46. Guo DC, Regalado E, Casteel DE, et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute
aortic dissections. Am J Hum Genet 2013;93:398-404. DOI PubMed PMC
47. Medina-Martinez O, Jamrich M. Foxe view of lens development and disease. Development 2007;134:1455-63. DOI PubMed
48. Kuang SQ, Medina-Martinez O, Guo DC, et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J Clin
Invest 2016;126:948-61. DOI PubMed PMC
49. Guo DC, Gong L, Regalado ES, et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am J Hum Genet
2015;96:170-7. DOI PubMed PMC
50. Lee VS, Halabi CM, Hoffman EP, et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans.
Proc Natl Acad Sci USA 2016;113:8759-64. DOI PubMed PMC
51. Guo DC, Regalado ES, Gong L, et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ Res 2016;118:928-
34. DOI PubMed PMC
52. Barbier M, Gross MS, Aubart M, et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the
pathogenesis of familial thoracic aortic aneurysms and dissections. Am J Hum Genet 2014;95:736-43. DOI PubMed PMC
53. Elbitar S, Renard M, Arnaud P, et al. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited
thoracic aortic aneurysm. Genet Med 2021;23:111-22. DOI PubMed PMC
54. Brautbar A, LeMaire SA, Franco LM, Coselli JS, Milewicz DM, Belmont JW. FBN1 mutations in patients with descending thoracic
aortic dissections. Am J Med Genet A 2010;152A:413-6. DOI PubMed PMC
55. Keramati AR, Sadeghpour A, Farahani MM, Chandok G, Mani A. The non-syndromic familial thoracic aortic aneurysms and
dissections maps to 15q21 locus. BMC Med Genet 2010;11:143. DOI PubMed PMC
56. LeMaire SA, McDonald ML, Guo DC, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic
aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet 2011;43:996-1000. DOI PubMed PMC
57. Milewicz DM, Michael K, Fisher N, Coselli JS, Markello T, Biddinger A. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic
aneurysms. Circulation 1996;94:2708-11. DOI PubMed
58. Lindsay ME, Schepers D, Bolar NA, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic
aneurysm. Nat Genet 2012;44:922-7. DOI PubMed PMC
59. Boileau C, Guo DC, Hanna N, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild
systemic features of Marfan syndrome. Nat Genet 2012;44:916-21. DOI PubMed PMC
60. Pannu H, Fadulu VT, Chang J, et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic
aneurysms and dissections. Circulation 2005;112:513-20. DOI
61. Jondeau G, Ropers J, Regalado E, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC
(montalcino aortic consortium). Circ Cardiovasc Genet 2016;9:548-58. DOI PubMed PMC
62. Regalado ES, Guo DC, Villamizar C, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic
aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res 2011;109:680-6. DOI PubMed PMC
63. Gong J, Zhou D, Jiang L, et al. In vitro lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3
deficiency: implications for SMAD3-Related thoracic aortic aneurysm. Arterioscler Thromb Vasc Biol 2020;40:1651-63. DOI
PubMed PMC
64. Zhang P, Hou S, Chen J, et al. Smad4 deficiency in smooth muscle cells initiates the formation of aortic aneurysm. Circ Res
2016;118:388-99. DOI
65. Heald B, Rigelsky C, Moran R, et al. Prevalence of thoracic aortopathy in patients with juvenile polyposis syndrome-hereditary
hemorrhagic telangiectasia due to SMAD4. Am J Med Genet A 2015;167:1758-62. DOI
66. Teekakirikul P, Milewicz DM, Miller DT, et al. Thoracic aortic disease in two patients with juvenile polyposis syndrome and SMAD4
mutations. Am J Med Genet A 2013;161:185-91. DOI PubMed PMC
67. Duan XY, Guo DC, Regalado ES, et al. SMAD4 rare variants in individuals and families with thoracic aortic aneurysms and
dissections. Eur J Hum Genet 2019;27:1054-60. DOI PubMed PMC
68. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature 2005;437:270-4. DOI
69. Mohamed SA, Aherrahrou Z, Liptau H, et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with
bicuspid aortic valve. Biochem Biophys Res Commun 2006;345:1460-5. DOI
70. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM 3rd. Novel NOTCH1 mutations in patients with
bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007;134:290-6. DOI PubMed
71. Boodhwani M, Andelfinger G, Leipsic J, et al. Canadian cardiovascular society position statement on the management of thoracic