Page 96 - Read Online
P. 96
Stojkovska Docevska et al. Rare Dis Orphan Drugs J 2023;2:14 https://dx.doi.org/10.20517/rdodj.2023.09 Page 13 of 17
14. Cigic B, Pain RH. Location of the binding site for chloride ion activation of cathepsin C. Eur J Biochem 1999;264:944-51. DOI
PubMed
15. Lindley H. The specificity of dipeptidyl aminopeptidase I (cathepsin C) and its use in peptide sequence studies. Biochem J
1972;126:683-5. DOI PubMed PMC
16. Wang F, Krai P, Deu E, et al. Biochemical characterization of plasmodium falciparum dipeptidyl aminopeptidase 1. Mol Biochem
Parasitol 2011;175:10-20. DOI PubMed PMC
17. de Vries LE, Sanchez MI, Groborz K, et al. Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies
differences in amino acid preferences between peptide-based substrates and covalent inhibitors. FEBS J 2019;286:3998-4023. DOI
PubMed PMC
18. Poreba M, Mihelic M, Krai P, et al. Unnatural amino acids increase activity and specificity of synthetic substrates for human and
malarial cathepsin C. Amino Acids 2014;46:931-43. DOI PubMed PMC
19. Łęgowska M, Hamon Y, Wojtysiak A, et al. Development of the first internally-quenched fluorescent substrates of human cathepsin
C: the application in the enzyme detection in biological samples. Arch Biochem Biophys 2016;612:91-102. DOI
20. Metrione RM, MacGeorge NL. The mechanism of action of dipeptidyl aminopeptidase. Inhibition by amino acid derivatives and
amines; activation by aromatic compounds. Biochemistry 1975;14:5249-52. DOI PubMed
21. Mcdonald JK, Callahan PX, Zeitman BB, Ellis S. Inactivation and degradation of glucagon by dipeptidyl aminopeptidase I
(Cathepsin C) of rat liver. J Biol Chem 1969;244:6199-208. DOI PubMed
22. Dolenc I, Turk B, Pungercic G, Ritonja A, Turk V. Oligomeric structure and substrate induced inhibition of human cathepsin C. J
Biol Chem 1995;270:21626-31. DOI PubMed
23. Gorter J, Gruber M. Cathepsin C: an allosteric enzyme. Biochim Biophys Acta 1970;198:546-55. DOI PubMed
24. Nilsson KK, Fruton JS. Polymerization reactions catalyzed by intracellular proteinases. iv. factors influencing the polymerization of
dipeptide amides by cathepsin C. Biochemistry 1964;3:1220-4. DOI PubMed
25. Gittel C, Schmidtchen FP. Directed N-terminal elongation of unprotected peptides catalyzed by cathepsin c in water. Bioconjug Chem
1995;6:70-6. DOI PubMed
26. Tavano OL. Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B-Enzym 2013;90:1-11. DOI
27. Cigić B, Dahl SW, Pain RH. The residual pro-part of cathepsin C fulfills the criteria required for an intramolecular chaperone in
folding and stabilizing the human proenzyme. Biochemistry 2000;39:12382-90. DOI PubMed
28. Dahl SW, Halkier T, Lauritzen C, et al. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L
and S but not by autocatalytic processing. Biochemistry 2001;40:1671-8. DOI
29. Lamort AS, Hamon Y, Czaplewski C, et al. Processing and maturation of cathepsin C zymogen: a biochemical and molecular
modeling analysis. Int J Mol Sci 2019;20:4747. DOI PubMed PMC
30. Santilman V, Jadot M, Mainferme F. Importance of the propeptide in the biosynthetic maturation of rat cathepsin C. Eur J Cell Biol
2002;81:654-63. DOI PubMed
31. Rebernik M, Snoj T, Klemenčič M, Novinec M. Interplay between tetrameric structure, enzymatic activity and allosteric regulation of
human dipeptidyl-peptidase I. Arch Biochem Biophys 2019;675:108121. DOI PubMed
32. Lauritzen C, Pedersen J, Madsen MT, Justesen J, Martensen PM, Dahl SW. Active recombinant rat dipeptidyl aminopeptidase I
(cathepsin C) produced using the baculovirus expression system. Protein Expr Purif 1998;14:434-42. DOI
33. Burge V, Mainferme F, Wattiaux R. Transient membrane association of the precursors of cathepsin C during their transfer into
lysosomes. Biochem J 1991;275:797-800. DOI PubMed PMC
34. Muno D, Ishidoh K, Ueno T, Kominami E. Processing and transport of the precursor of cathepsin C during its transfer into
lysosomes. Arch Biochem Biophys 1993;306:103-10. DOI PubMed
35. Clair J, Shi GP, Sutherland RE, Chapman HA, Caughey GH, Wolters PJ. Cathepsins L and S are not required for activation of
dipeptidyl peptidase I (cathepsin C) in mice. Biol Chem 2006;387:1143-6. DOI PubMed PMC
36. Hamon Y, Legowska M, Hervé V, et al. Neutrophilic cathepsin C is maturated by a multistep proteolytic process and secreted by
activated cells during inflammatory lung diseases. J Biol Chem 2016;291:8486-99. DOI PubMed PMC
37. Olsen JG, Kadziola A, Lauritzen C, Pedersen J, Larsen S, Dahl SW. Tetrameric dipeptidyl peptidase I directs substrate specificity by
use of the residual pro-part domain. FEBS Lett 2001;506:201-6. DOI PubMed
38. Cigić B, Pain RH. Competitive inhibition of cathepsin C by guanidinium ions and reexamination of substrate inhibition. Biochem
Biophys Res Commun 1999;258:6-10. DOI PubMed
39. Rebernik M, Lenarčič B, Novinec M. The catalytic domain of cathepsin C (dipeptidyl-peptidase I) alone is a fully functional
endoprotease. Protein Expr Purif 2019;157:21-7. DOI PubMed
40. Wolters PJ, Laig-Webster M, Caughey GH. Dipeptidyl peptidase I cleaves matrix-associated proteins and is expressed mainly by
mast cells in normal dog airways. Am J Respir Cell Mol Biol 2000;22:183-90. DOI PubMed
41. Kuribayashi M, Yamada H, Ohmori T, Yanai M, Imoto T. Endopeptidase activity of cathepsin C, dipeptidyl aminopeptidase I, from
bovine spleen. J Biochem 1993;113:441-9. DOI PubMed
42. Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 2006;6:541-50. DOI
43. Perera NC, Schilling O, Kittel H, Back W, Kremmer E, Jenne DE. NSP4, an elastase-related protease in human neutrophils with
arginine specificity. Proc Natl Acad Sci U S A 2012;109:6229-34. DOI PubMed PMC
44. Salvesen G, Enghild JJ. An unusual specificity in the activation of neutrophil serine proteinase zymogens. Biochemistry