Page 73 - Read Online
P. 73

Skoreński et al. Rare Dis Orphan Drugs J 2023;2:6  https://dx.doi.org/10.20517/rdodj.2022.21  Page 23 of 23

               62.      Budnjo A, Narawane S, Grauffel C, et al. Reversible ketomethylene-based inhibitors of human neutrophil proteinase 3. J Med Chem
                   2014;57:9396-408.  DOI  PubMed
               63.      Hwang TL, Wang WH, Wang TY, Yu HP, Hsieh PW. Synthesis and pharmacological characterization of 2-aminobenzaldehyde oxime
                   analogs as dual inhibitors of neutrophil elastase and proteinase 3. Bioorg Med Chem 2015;23:1123-34.  DOI  PubMed
               64.      Grzywa R, Burchacka E, Łęcka M, et al. Synthesis of novel phosphonic-type activity-based probes for neutrophil serine proteases and
                   their application in spleen lysates of different organisms. Chembiochem 2014;15:2605-12.  DOI  PubMed
               65.      Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of fluorescent probes for parallel imaging reveals uneven
                   location of serine proteases in neutrophils. J Am Chem Soc 2017;139:10115-25.  DOI  PubMed  PMC
               66.      Tian S, Swedberg JE, Li CY, Craik DJ, de Veer SJ. Iterative optimization of the cyclic peptide SFTI-1 yields potent inhibitors of
                   neutrophil proteinase 3. ACS Med Chem Lett 2019;10:1234-9.  DOI  PubMed  PMC
               67.      Saidi A, Wartenberg M, Madinier JB, et al. Monitoring human neutrophil activation by a proteinase 3 near-infrared fluorescence
                   substrate-based probe. Bioconjug Chem 2021;32:1782-90.  DOI  PubMed
               68.      Pagano MB, Bartoli MA, Ennis TL, et al. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of
                   experimental abdominal aortic aneurysms. Proc Natl Acad Sci USA 2007;104:2855-60.  DOI  PubMed  PMC
               69.      Hermant B, Bibert S, Concord E, et al. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during
                   neutrophil transmigration. J Biol Chem 2003;278:14002-12.  DOI  PubMed
               70.      Ramaha A, Patston PA. Release and degradation of angiotensin I and angiotensin II from angiotensinogen by neutrophil serine
                   proteinases. Arch Biochem Biophys 2002;397:77-83.  DOI  PubMed
               71.      Okada Y, Nakanishi I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human
                   neutrophil elastase and cathepsin G. FEBS Lett 1989;249:353-6.  DOI  PubMed
               72.      Chatham WW, Blackburn WD Jr, Heck LW. Additive enhancement of neutrophil collagenase activity by HOCl and cathepsin G.
                   Biochem Biophys Res Commun 1992;184:560-7.  DOI  PubMed
               73.      Scott FL, Hirst CE, Sun J, Bird CH, Bottomley SP, Bird PI. The Intracellular serpin proteinase inhibitor 6 is expressed in monocytes
                   and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Blood 1999;93:2089-97.  PubMed
               74.      Polanowska J, Krokoszynska I, Czapinska H, Watorek W, Dadlez M, Otlewski J. Specificity of human cathepsin G. Biochim Biophys
                   Acta 1998;1386:189-98.  DOI  PubMed
               75.      Wysocka M, Legowska A, Bulak E, et al. New chromogenic substrates of human neutrophil cathepsin G containing non-natural
                   aromatic amino acid residues in position P(1) selected by combinatorial chemistry methods. Mol Divers 2007;11:93-9.  DOI  PubMed
               76.      Lesner A, Wysocka M, Guzow K, Wiczk W, Legowska A, Rolka K. Development of sensitive cathepsin G fluorogenic substrate using
                   combinatorial chemistry methods. Anal Biochem 2008;375:306-12.  DOI  PubMed
               77.      Groborz K, Kołt S, Kasperkiewicz P, Drag M. Internally quenched fluorogenic substrates with unnatural amino acids for cathepsin G
                   investigation. Biochimie 2019;166:103-11.  DOI  PubMed
               78.      Oleksyszyn J, Powers JC. Irreversible inhibition of serine proteases by peptide derivatives of (alpha-aminoalkyl)phosphonate diphenyl
                   esters. Biochemistry 1991;30:485-93.  DOI  PubMed
               79.      Sieńczyk M, Lesner A, Wysocka M, et al. New potent cathepsin G phosphonate inhibitors. Bioorg Med Chem 2008;16:8863-7.  DOI
                   PubMed
               80.      Serim S, Baer P, Verhelst SH. Mixed alkyl aryl phosphonate esters as quenched fluorescent activity-based probes for serine proteases.
                   Org Biomol Chem 2015;13:2293-9.  DOI  PubMed
               81.      Kam CM, Abuelyaman AS, Li Z, Hudig D, Powers JC. Biotinylated isocoumarins, new inhibitors and reagents for detection,
                   localization, and isolation of serine proteases. Bioconjug Chem 1993;4:560-7.  DOI  PubMed
               82.      Haedke U, Götz M, Baer P, Verhelst SH. Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.
                   Bioorg Med Chem 2012;20:633-40.  DOI  PubMed
               83.      Kahler JP, Lenders S, van de Plassche MAT, Verhelst SHL. Facile synthesis of aminomethyl phosphinate esters as serine protease
                   inhibitors with primed site interaction. ACS Med Chem Lett 2020;11:1739-44.  DOI  PubMed  PMC
               84.      Perera NC, Schilling O, Kittel H, Back W, Kremmer E, Jenne DE. NSP4, an elastase-related protease in human neutrophils with
                   arginine specificity. Proc Natl Acad Sci USA 2012;109:6229-34.  DOI  PubMed  PMC
               85.      Perera NC, Wiesmüller KH, Larsen MT, et al. NSP4 is stored in azurophil granules and released by activated neutrophils as active
                   endoprotease with restricted specificity. J Immunol 2013;191:2700-7.  DOI  PubMed
               86.      Akula S, Thorpe M, Boinapally V, Hellman L. Granule associated serine proteases of hematopoietic cells - an analysis of their
                   appearance and diversification during vertebrate evolution. PLoS One 2015;10:e0143091.  DOI  PubMed  PMC
               87.      Lin SJ, Dong KC, Eigenbrot C, van Lookeren Campagne M, Kirchhofer D. Structures of neutrophil serine protease 4 reveal an unusual
                   mechanism of substrate recognition by a trypsin-fold protease. Structure 2014;22:1333-40.  DOI  PubMed
               88.      AhYoung AP, Eckard SC, Gogineni A, et al. Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage.
                   Commun Biol 2020;3:687.  DOI  PubMed  PMC
               89.      Kasperkiewicz P, Poreba M, Snipas SJ, et al. Design of a selective substrate and activity based probe for human neutrophil serine
                   protease 4. PLoS One 2015;10:e0132818.  DOI  PubMed  PMC
               90.      Wysocka M, Gruba N, Grzywa R, et al. PEGylated substrates of NSP4 protease: a tool to study protease specificity. Sci Rep
                   2016;6:22856.  DOI  PubMed  PMC
   68   69   70   71   72   73   74   75   76   77   78