Page 73 - Read Online
P. 73
Skoreński et al. Rare Dis Orphan Drugs J 2023;2:6 https://dx.doi.org/10.20517/rdodj.2022.21 Page 23 of 23
62. Budnjo A, Narawane S, Grauffel C, et al. Reversible ketomethylene-based inhibitors of human neutrophil proteinase 3. J Med Chem
2014;57:9396-408. DOI PubMed
63. Hwang TL, Wang WH, Wang TY, Yu HP, Hsieh PW. Synthesis and pharmacological characterization of 2-aminobenzaldehyde oxime
analogs as dual inhibitors of neutrophil elastase and proteinase 3. Bioorg Med Chem 2015;23:1123-34. DOI PubMed
64. Grzywa R, Burchacka E, Łęcka M, et al. Synthesis of novel phosphonic-type activity-based probes for neutrophil serine proteases and
their application in spleen lysates of different organisms. Chembiochem 2014;15:2605-12. DOI PubMed
65. Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of fluorescent probes for parallel imaging reveals uneven
location of serine proteases in neutrophils. J Am Chem Soc 2017;139:10115-25. DOI PubMed PMC
66. Tian S, Swedberg JE, Li CY, Craik DJ, de Veer SJ. Iterative optimization of the cyclic peptide SFTI-1 yields potent inhibitors of
neutrophil proteinase 3. ACS Med Chem Lett 2019;10:1234-9. DOI PubMed PMC
67. Saidi A, Wartenberg M, Madinier JB, et al. Monitoring human neutrophil activation by a proteinase 3 near-infrared fluorescence
substrate-based probe. Bioconjug Chem 2021;32:1782-90. DOI PubMed
68. Pagano MB, Bartoli MA, Ennis TL, et al. Critical role of dipeptidyl peptidase I in neutrophil recruitment during the development of
experimental abdominal aortic aneurysms. Proc Natl Acad Sci USA 2007;104:2855-60. DOI PubMed PMC
69. Hermant B, Bibert S, Concord E, et al. Identification of proteases involved in the proteolysis of vascular endothelium cadherin during
neutrophil transmigration. J Biol Chem 2003;278:14002-12. DOI PubMed
70. Ramaha A, Patston PA. Release and degradation of angiotensin I and angiotensin II from angiotensinogen by neutrophil serine
proteinases. Arch Biochem Biophys 2002;397:77-83. DOI PubMed
71. Okada Y, Nakanishi I. Activation of matrix metalloproteinase 3 (stromelysin) and matrix metalloproteinase 2 (‘gelatinase’) by human
neutrophil elastase and cathepsin G. FEBS Lett 1989;249:353-6. DOI PubMed
72. Chatham WW, Blackburn WD Jr, Heck LW. Additive enhancement of neutrophil collagenase activity by HOCl and cathepsin G.
Biochem Biophys Res Commun 1992;184:560-7. DOI PubMed
73. Scott FL, Hirst CE, Sun J, Bird CH, Bottomley SP, Bird PI. The Intracellular serpin proteinase inhibitor 6 is expressed in monocytes
and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Blood 1999;93:2089-97. PubMed
74. Polanowska J, Krokoszynska I, Czapinska H, Watorek W, Dadlez M, Otlewski J. Specificity of human cathepsin G. Biochim Biophys
Acta 1998;1386:189-98. DOI PubMed
75. Wysocka M, Legowska A, Bulak E, et al. New chromogenic substrates of human neutrophil cathepsin G containing non-natural
aromatic amino acid residues in position P(1) selected by combinatorial chemistry methods. Mol Divers 2007;11:93-9. DOI PubMed
76. Lesner A, Wysocka M, Guzow K, Wiczk W, Legowska A, Rolka K. Development of sensitive cathepsin G fluorogenic substrate using
combinatorial chemistry methods. Anal Biochem 2008;375:306-12. DOI PubMed
77. Groborz K, Kołt S, Kasperkiewicz P, Drag M. Internally quenched fluorogenic substrates with unnatural amino acids for cathepsin G
investigation. Biochimie 2019;166:103-11. DOI PubMed
78. Oleksyszyn J, Powers JC. Irreversible inhibition of serine proteases by peptide derivatives of (alpha-aminoalkyl)phosphonate diphenyl
esters. Biochemistry 1991;30:485-93. DOI PubMed
79. Sieńczyk M, Lesner A, Wysocka M, et al. New potent cathepsin G phosphonate inhibitors. Bioorg Med Chem 2008;16:8863-7. DOI
PubMed
80. Serim S, Baer P, Verhelst SH. Mixed alkyl aryl phosphonate esters as quenched fluorescent activity-based probes for serine proteases.
Org Biomol Chem 2015;13:2293-9. DOI PubMed
81. Kam CM, Abuelyaman AS, Li Z, Hudig D, Powers JC. Biotinylated isocoumarins, new inhibitors and reagents for detection,
localization, and isolation of serine proteases. Bioconjug Chem 1993;4:560-7. DOI PubMed
82. Haedke U, Götz M, Baer P, Verhelst SH. Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.
Bioorg Med Chem 2012;20:633-40. DOI PubMed
83. Kahler JP, Lenders S, van de Plassche MAT, Verhelst SHL. Facile synthesis of aminomethyl phosphinate esters as serine protease
inhibitors with primed site interaction. ACS Med Chem Lett 2020;11:1739-44. DOI PubMed PMC
84. Perera NC, Schilling O, Kittel H, Back W, Kremmer E, Jenne DE. NSP4, an elastase-related protease in human neutrophils with
arginine specificity. Proc Natl Acad Sci USA 2012;109:6229-34. DOI PubMed PMC
85. Perera NC, Wiesmüller KH, Larsen MT, et al. NSP4 is stored in azurophil granules and released by activated neutrophils as active
endoprotease with restricted specificity. J Immunol 2013;191:2700-7. DOI PubMed
86. Akula S, Thorpe M, Boinapally V, Hellman L. Granule associated serine proteases of hematopoietic cells - an analysis of their
appearance and diversification during vertebrate evolution. PLoS One 2015;10:e0143091. DOI PubMed PMC
87. Lin SJ, Dong KC, Eigenbrot C, van Lookeren Campagne M, Kirchhofer D. Structures of neutrophil serine protease 4 reveal an unusual
mechanism of substrate recognition by a trypsin-fold protease. Structure 2014;22:1333-40. DOI PubMed
88. AhYoung AP, Eckard SC, Gogineni A, et al. Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage.
Commun Biol 2020;3:687. DOI PubMed PMC
89. Kasperkiewicz P, Poreba M, Snipas SJ, et al. Design of a selective substrate and activity based probe for human neutrophil serine
protease 4. PLoS One 2015;10:e0132818. DOI PubMed PMC
90. Wysocka M, Gruba N, Grzywa R, et al. PEGylated substrates of NSP4 protease: a tool to study protease specificity. Sci Rep
2016;6:22856. DOI PubMed PMC