Page 189 - Read Online
P. 189

Nelms et al. Plast Aesthet Res 2019;6:21  I  http://dx.doi.org/10.20517/2347-9264.2019.40                                        Page 11 of 12

               62.   Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta
                   Biomater 2012;8:1401-21.
               63.   Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, et al. 3D printing of composite calcium phosphate and collagen scaffolds for
                   bone regeneration. Biomaterials 2014;35:4026-34.
               64.   Yuan J, Zhang WJ, Liu G, Wei M, Qi ZL, et al. Repair of canine mandibular bone defects with bone marrow stromal cells and coral.
                   Tissue Eng Part A 2010;16:1385-94.
               65.   Nolff MC, Gellrich NC, Hauschild G, Fehr M, Bormann KH, et al. Comparison of two β-tricalcium phosphate composite grafts used
                   for reconstruction of mandibular critical size bone defects. Vet Comp Orthopaed 2009;22:96-102.
               66.   Schliephake H, Knebel JW, Aufderheide M, Tauscher M. Use of cultivated osteoprogenitor cells to increase bone formation in
                   segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg 2001;30:531-7.
               67.   Hart LR, Li S, Sturgess C, Wildman R, Jones JR, et al. 3D printing of biocompatible supramolecular polymers and their composites.
                   ACS Appl Mater Inter 2016;8:3115-22.
               68.   Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, et al. Biodegradable materials for bone repair and tissue engineering
                   applications. Materials (Basel) 2015;8:5744-94.
               69.   Begam H, Nandi SK, Kundu B, Chanda A. Strategies for delivering bone morphogenetic protein for bone healing. Mat Sci Eng C
                   2017;70:856-69.
               70.   Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol 2003;21:1025-32.
               71.   Gardin C, Ricci S, Ferroni L, Guazzo R, Sbricoli L, et al. Decellularization and Delipidation Protocols of Bovine Bone and
                   Pericardium for Bone Grafting and Guided Bone Regeneration Procedures. PLoS One 2015;10:e0132344.
               72.   Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev
                   2005;16:329-45.
               73.   Kakabadze A, Mardaleishvili K, Loladze G, Karalashvili L, Chutkerashvili G, et al. Reconstruction of mandibular defects with
                   autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncol Lett
                   2017;13:1811-8.
               74.   Scarano, Antonio, Felice Lorusso, Giorgio Staiti, Bruna Sinjari, et al. “Sinus augmentation with biomimetic nanostructured matrix:
                   tomographic, radiological, histological and histomorphometrical results after 6 months in humans.” Front Physiol 2017;8:565.
               75.   Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg 2001;71:354-61.
               76.   Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.
                   Biomaterials 2004;25:4749-57.
               77.   Cai B, Jiang N, Zhang L, Huang J, Wang D, et al. Nano-hydroxyapatite/polyamide66 composite scaffold conducting osteogenesis to
                   repair mandible defect. J Bioact Compat Pol 2019;34:72-82.
               78.   Xiong Y, Ren C, Zhang B, Yang H, Lang Y, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66)
                   composite for healing of bone defects. Int J Nanomed 2014;9:485-94.
               79.   Zhu W, Qu X, Zhu J, Ma X, Patel S, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.
                   Biomaterials 2017;124:106-15.
               80.   Bai, Renu Geetha, Kasturi Muthoosamy, Sivakumar Manickam, and Ali Hilal-Alnaqbi. “Graphene-based 3D scaffolds in tissue
                   engineering: fabrication, applications, and future scope in liver tissue engineering.” Int J Nanomed 2019;14:5753.
               81.   Prasadh S, Suresh S, Wong R. Osteogenic potential of graphene in bone tissue engineering scaffolds. Materials 2018;11:1430.
               82.   Bianco P, Gehron RP. Marrow stromal stem cells. J Clin Invest 2000;105:1663-8.
               83.   Jaquiéry C, Schaeren S, Farhadi J, Mainil-Varlet P, Kunz C, et al. In vitro osteogenic differentiation and in vivo bone-forming capacity
                   of human isogenic jaw periosteal cells and bone marrow stromal cells. Ann Surg 2005;242:859.
               84.   Frank O, Heim M, Jakob M, Barbero A, Schäfer D, et al. Real-time quantitative RT-PCR analysis of human bone marrow stromal cells
                   during osteogenic differentiation in vitro. J Cell Biochem 2002;85:737-46.
               85.   Chanchareonsook N, Junker R, Jongpaiboonkit L, Jansen JA. Tissue-engineered mandibular bone reconstruction for continuity
                   defects: a systematic approach to the literature. Tissue Eng Part B Rev 2013;20:147-62.
               86.   Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R. Fibroblast growth factor-2 supports ex vivo expansion and maintenance
                   of osteogenic precursors from human bone marrow. Endocrinology 1997;138:4456-62.
               87.   Quarto R, Mastrogiacomo M, Cancedda R, Kutepov SM, Mukhachev V, et al. Repair of large bone defects with the use of autologous
                   bone marrow stromal cells. N Engl J Med 2001;344:385-6.
               88.   Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J
                   Stem Cells 2014;6:288-95.
               89.   Bakhtiar H, Mazidi A, Asl SM, Ellini MR, Moshiri A, et al. The role of stem cell therapy in regeneration of dentine-pulp complex: a
                   systematic review. Prog Biomater 2018;7:249-68.
               90.   Raspini G, Wolff J, Helminen M, Raspini G, Raspini M, et al. Dental stem cells harvested from third molars combined with bioactive
                   glass can induce signs of bone formation in vitro. J Oral Maxillofac Res 2018;9:e2.
               91.   Spagnuolo G, Codispoti B, Marrelli M, Rengo C, Rengo S, et al. Commitment of oral-derived stem cells in dental and maxillofacial
                   applications. Dent J (Basel) 2018;6:E72.
               92.   Marukawa E, Asahina I, Oda M, Seto I, Alam MI, et al. Bone regeneration using recombinant human bone morphogenetic protein-2
                   (rhBMP-2) in alveolar defects of primate mandibles. British J Oral Maxil Surg 2001;39:452-9.
               93.   Jiang X, Gittens SA, Chang Q, Zhang X, Chen C, et al. The use of tissue-engineered bone with human bone morphogenetic protein-4-
   184   185   186   187   188   189   190   191   192   193   194