Page 172 - Read Online
P. 172
Azoury et al. Plast Aesthet Res 2020;7:4 I http://dx.doi.org/10.20517/2347-9264.2019.44 Page 17 of 20
7. Erba P, Ogawa R, Vyas R, Orgill DP. The reconstructive matrix: a new paradigm in reconstructive plastic surgery. Plast Reconstr Surg
2010;126:492-8.
8. Zuo KJ, Willand MP, Ho ES, Ramdial S, Borschel GH. Targeted muscle reinnervation. Plast Reconstr Surg 2018;141:1447-58.
9. Fracol ME, Janes LE, Ko JH, Dumanian GA. Targeted muscle reinnervation in the lower leg. Plast Reconstr Surg 2018;142:541-50e.
10. Dumanian G, Souza J. Surgical techniques for targeted muscle reinnervation. 2013. pp. 21-44.
11. Tintle SM, LeBrun C, Ficke JR, Potter BK. What is new in trauma-related amputations. J Orthop Trauma 2016;30:S16-20.
12. Hebert JS, Rehani M, Stiegelmar R. Osseointegration for lower-limb amputation: a systematic review of clinical outcomes. JBJS Rev
2017;5:e10.
13. Brånemark RP, Hagberg K, Kulbacka-Ortiz K, Berlin Ö, Rydevik B. Osseointegrated percutaneous prosthetic system for the treatment of
patients with transfemoral amputation. J Am Acad Orthop Surg 2019;27:e743-51.
14. Levin LS. From autotransplantation to allotransplantation: a perspective on the future of reconstructive microsurgery. J Reconstr
Microsurg 2018;34:681-2.
15. Carlsen BT, Prigge P, Peterson J. Upper extremity limb loss: functional restoration from prosthesis and targeted reinnervation to
transplantation. J Hand Ther 2014;27:106-14.
16. Petruzzo P, Dubernard JM. The international registry on hand and composite tissue. Clin Transpl 2011;247-53.
17. Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, et al. Targeted muscle reinnervation for real-time myoelectric control of
multifunction artificial arms. JAMA 2009;301:619-28.
18. Souza JM, Cheesborough JE, Ko JH, Cho MS, Kuiken TA, et al. Targeted muscle reinnervation: a novel approach to postamputation
neuroma pain. Clin Orthop Relat Res 2014;472:2984-90.
19. Cheesborough JE, Souza JM, Dumanian GA, Bueno RA. Targeted muscle reinnervation in the initial management of traumatic upper
extremity amputation injury. Hand 2014;9:253-7.
20. Miranda RA, Casebeer WD, Hein AM, Judy JW, Krotkov EP, et al. DARPA-funded efforts in the development of novel brain-computer
interface technologies. J Neurosci Methods 2014;244:52-67.
21. Mioton LM, Dumanian GA. Targeted muscle reinnervation and prosthetic rehabilitation after limb loss. J Surg Oncol 2018;118:807-14.
22. Bowen JB, Wee CE, Kalik J, Valerio IL. Targeted muscle reinnervation to improve pain, prosthetic tolerance, and bioprosthetic outcomes
in the amputee. Adv Wound Care 2017;6:261-7.
23. Atzori M, Müller H. Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview.
Front Syst Neurosci 2015;9:162.
24. Hargrove LJ, Miller LA, Turner K, Kuiken TA. Myoelectric pattern recognition outperforms direct control for transhumeral amputees
with targeted muscle reinnervation: a randomized clinical trial. Sci Rep 2017;7:13840.
25. Kuiken TA, Miller LA, Turner K, Hargrove LJ. A comparison of pattern recognition control and direct control of a multiple degree-of-
freedom transradial prosthesis. IEEE J Transl Eng Heal Med 2016;4:2100508.
26. Gart MS, Souza JM, Dumanian GA. Targeted muscle reinnervation in the upper extremity amputee: a technical roadmap. J Hand Surg
Am 2015:40:1877-88.
27. Pierrie SN, Gaston RG, Loeffler BJ. Targeted muscle reinnervation for prosthesis optimization and neuroma management in the setting of
transradial amputation. J Hand Surg Am 2019;44:525.e1-525.e8.
28. Morgan EN, Potter BK, Souza JM, Tintle SM, Nanos GP. Targeted muscle reinnervation for transradial amputation: description of
operative technique. Tech Hand Up Extrem Surg 2016;20:166-71.
29. Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor
control of artificial limbs. Sci Transl Med 2014;6:257re6.
30. Takagi T, Ogiri Y, Kato R, Kodama M, Yamanoi Y, et al. Selective motor fascicle transfer and neural-machine interface: case report. J
Neurosurg 2019;1-7.
31. Gaston RG, Bracey JW, Tait MA, Loeffler BJ. A novel muscle transfer for independent digital control of a myoelectric prosthesis: the
starfish procedure. J Hand Surg Am 2019;44:163.e1-163.e5.
32. Pasquina PF, Perry BN, Miller ME, Ling GSF, Tsao JW. Practice recent advances in bioelectric prostheses. Neurol Clin Pract 2015;5:164-70.
33. Hargrove LJ, Simon AM, Young AJ, Lipschutz RD, Finucane SB, et al. Robotic leg control with EMG decoding in an amputee with nerve
transfers. N Engl J Med 2013;369:1237-42.
34. Hargrove LJ, Young AJ, Simon AM, Fey NP, Lipschutz RD, et al. Intuitive control of a powered prosthetic leg during ambulation: a
randomized clinical trial. JAMA 2015;313:2244-52.
35. Lund LH, Benson L. Real-time myoelectric control of knee and ankle motions for transfemoral amputees. JAMA 2011;305:1542-4.
36. Pet MA, Ko JH, Friedly JL, Smith DG. Traction neurectomy for treatment of painful residual limb neuroma in lower extremity amputees.
J Orthop Trauma 2015;29:e321-5.
37. Suckow BD, Goodney PP, Nolan BW, Veeraswamy RK, Gallagher P, et al. Domains that determine quality of life in vascular amputees.
Ann Vasc Surg 2015;29:722-30.
38. Kuffler DP. Coping with phantom limb pain. Mol Neurobiol 2018;55:70-84.
39. Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees:
results of a national survey. Arch Phys Med Rehabil 2005;86:1910-9.
40. Richardson C, Glenn S, Nurmikko T, Horgan M, Fe C. Incidence of phantom phenomena including phantom limb pain 6 months after
major lower limb amputation in patients with peripheral vascular disease. Clin J Pain 2006;22:353-8.
41. Ducic I, Mesbahi AN, Attinger CE, Graw K. The role of peripheral nerve surgery in the treatment of chronic pain associated with