Page 87 - Read Online
P. 87

García Nores et al. Plast Aesthet Res 2023;10:33  https://dx.doi.org/10.20517/2347-9264.2022.146  Page 9 of 10

               REFERENCES
               1.       Khansa I, Momoh AO, Patel PP, Nguyen JT, Miller MJ, Lee BT. Fat necrosis in autologous abdomen-based breast reconstruction: a
                   systematic review. Plast Reconstr Surg 2013;131:443-52.  DOI  PubMed
               2.       Albino FP, Koltz PF, Ling MN, Langstein HN. Irradiated autologous breast reconstructions: effects of patient factors and treatment
                   variables. Plast Reconstr Surg 2010;126:12-6.  DOI  PubMed
               3.       Haddock NT, Dumestre DO, Teotia SS. Efficiency in DIEP flap breast reconstruction: the real benefit of computed tomographic
                   angiography imaging. Plast Reconstr Surg 2020;146:719-23.  DOI  PubMed
               4.       Kim H, Mun GH, Wiraatmadja ES, et al. Preoperative magnetic resonance imaging-based breast volumetry for immediate breast
                   reconstruction. Aesthetic Plast Surg 2015;39:369-76.  DOI
               5.       Rozen WM, Ashton MW. Improving outcomes in autologous breast reconstruction. Aesthetic Plast Surg 2009;33:327-35.  DOI
                   PubMed
               6.       Wade RG, Watford J, Wormald JCR, Bramhall RJ, Figus A. Perforator mapping reduces the operative time of DIEP flap breast
                   reconstruction: a systematic review and meta-analysis of preoperative ultrasound, computed tomography and magnetic resonance
                   angiography. J Plast Reconstr Aesthet Surg 2018;71:468-77.  DOI  PubMed
               7.       Wagner RD, Doval AF, Mehra NV, et al. Incidental findings in CT and MR angiography for preoperative planning in DIEP flap breast
                   reconstruction. Plast Reconstr Surg Glob Open 2020;8:e3159.  DOI  PubMed  PMC
               8.       Davis CR, Jones L, Tillett RL, Richards H, Wilson SM. Predicting venous congestion before DIEP breast reconstruction by identifying
                   atypical venous connections on preoperative CTA imaging. Microsurgery 2019;39:24-31.  DOI  PubMed
               9.       Lauritzen E, Damsgaard TE. Use of Indocyanine green angiography decreases the risk of complications in autologous- and implant-
                   based breast reconstruction: a systematic review and meta-analysis. J Plast Reconstr Aesthet Surg 2021;74:1703-17.  DOI  PubMed
               10.      Hembd AS, Yan J, Zhu H, Haddock NT, Teotia SS. Intraoperative assessment of DIEP flap breast reconstruction using indocyanine
                   green angiography: reduction of fat necrosis, resection volumes, and postoperative Surveillance. Plast Reconstr Surg 2020;146:1e-10e.
                   DOI  PubMed
               11.      Momeni A, Sheckter C. Intraoperative laser-assisted indocyanine green imaging can reduce the rate of fat necrosis in microsurgical
                   breast reconstruction. Plast Reconstr Surg 2020;145:507e-13e.  DOI  PubMed
               12.      Malagón-López P, Vilà J, Carrasco-López C, et al. Intraoperative Indocyanine green angiography for fat necrosis reduction in the deep
                   inferior epigastric perforator (DIEP) flap. Aesthet Surg J 2019;39:NP45-54.  DOI
               13.      Parmeshwar N, Sultan SM, Kim EA, Piper ML. A Systematic review of the utility of indocyanine angiography in autologous breast
                   reconstruction. Ann Plast Surg 2021;86:601-6.  DOI  PubMed
               14.      Yoo A, Palines PA, Mayo JL, et al. The impact of indocyanine green angiography on fat necrosis in deep inferior epigastric perforator
                   flap breast reconstruction. Ann Plast Surg 2022;88:415-9.  DOI
               15.      Bailey SH, Saint-Cyr M, Wong C, et al. The single dominant medial row perforator DIEP flap in breast reconstruction: three-
                   dimensional perforasome and clinical results. Plast Reconstr Surg 2010;126:739-51.  DOI
               16.      Kamali P, Lee M, Lee BT. Medial row perforators are associated with higher rates of fat necrosis in bilateral DIEP flap breast
                   reconstruction. Plast Reconstr Surg 2017;140:819e-20e.  DOI  PubMed
               17.      Garvey PB, Salavati S, Feng L, Butler CE. Perfusion-related complications are similar for DIEP and muscle-sparing free TRAM flaps
                   harvested on medial or lateral deep inferior epigastric Artery branch perforators for breast reconstruction. Plast Reconstr Surg
                   2011;128:581e-9e.  DOI  PubMed  PMC
               18.      Wong C, Saint-Cyr M, Mojallal A, et al. Perforasomes of the DIEP flap: vascular anatomy of the lateral versus medial row perforators
                   and clinical implications. Plast Reconstr Surg 2010;125:772-82.  DOI  PubMed
               19.      Hembd A, Teotia SS, Zhu H, Haddock NT. Optimizing perforator selection: a multivariable analysis of predictors for fat necrosis and
                   abdominal morbidity in DIEP flap breast reconstruction. Plast Reconstr Surg 2018;142:583-92.  DOI  PubMed
               20.      Baumann DP, Lin HY, Chevray PM. Perforator number predicts fat necrosis in a prospective analysis of breast reconstruction with free
                   TRAM, DIEP, and SIEA flaps. Plast Reconstr Surg 2010;125:1335-41.  DOI
               21.      Garvey PB, DelBello SM, Liu J, Kronowitz SJ, Butler CE. DIEP and MS FTRAM flaps based on both branches of the deep inferior
                   epigastric artery result in fewer perfusion-related complications than single DIEA branch flaps: a study of 1127 patients. Plast
                   Reconstr Surg 2012;130:12.  DOI
               22.      Bhullar H, Hunter-Smith DJ, Rozen WM. Fat necrosis after DIEP flap breast reconstruction: a review of perfusion-related causes.
                   Aesthetic Plast Surg 2020;44:1454-61.  DOI  PubMed
               23.      Grover R, Nelson JA, Fischer JP, Kovach SJ, Serletti JM, Wu LC. The impact of perforator number on deep inferior epigastric
                   perforator flap breast reconstruction. Arch Plast Surg 2014;41:63-70.  DOI  PubMed  PMC
               24.      Mohan AT, Zhu L, Wang Z, Vijayasekaran A, Saint-Cyr M. Techniques and perforator selection in single, dominant diep flap breast
                   reconstruction: algorithmic approach to maximize efficiency and safety. Plast Reconstr Surg 2016;138:790e-803e.  DOI  PubMed
               25.      Garvey PB, Delbello SM, Liu J, Kronowitz SJ, Butler CE. Balancing flap perfusion & donor site morbidity: an evidence-based
                   approach to optimizing outcomes for free flap breast reconstruction. Plast Reconstr Surg 2012;130:76.  DOI
               26.      DellaCroce FJ, DellaCroce HC, Blum CA, et al. Myth-busting the diep flap and an introduction to the abdominal perforator exchange
                   (APEX) breast reconstruction technique: a single-surgeon retrospective review. Plast Reconstr Surg 2019;143:992-1008.  DOI
                   PubMed  PMC
               27.      Ali R, Bernier C, Lin YT, et al. Surgical strategies to salvage the venous compromised deep inferior epigastric perforator flap. Ann
   82   83   84   85   86   87   88   89   90   91   92