Page 92 - Read Online
P. 92

Slattery et al. Neuroimmunol Neuroinflammation 2018;5:11  I  http://dx.doi.org/10.20517/2347-8659.2018.05           Page 13 of 15

               REFERENCES
               1.   Drachman DA. The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease.
                   Alzheimers Dement 2014;10:372-80.
               2.   Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 2005;37:289-305.
               3.   Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE,
                   Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J,
                   Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D,
                   Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000;21:383-421.
               4.   Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015;16:358-
                   72.
               5.   Xu L, He D, Bai Y. Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 2015;53:6709-15.
               6.   Hornik TC, Vilalta A, Brown GC. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death
                   by phagocytosis. J Cell Sci 2016;129:65-79.
               7.   Shefa U, Yeo SG, Kim MS, Song IO, Jung J, Jeong NY, Huh Y. Role of gasotransmitters in oxidative stresses, neuroinflammation, and
                   neuronal repair. Biomed Res Int 2017;2017:1689341.
               8.   Steinert JR, Chernova T, Forsythe ID. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 2010;16:435-
                   52.
               9.   Park TS, Ryu YK, Park HY, Kim JY, Go J, Noh JR, Kim YH, Hwang JH, Choi DH, Oh WK, Lee CH, Kim KS. Humulus japonicus
                   inhibits the progression of Alzheimer’s disease in a APP/PS1 transgenic mouse model. Int J Mol Med 2017;39:21-30.
               10.  Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, Wang Z, Qiao Z. Gx-50 reduces beta-amyloid-induced TNF-alpha, IL-1beta, NO, and
                   PGE2 expression and inhibits NF-kappaB signaling in a mouse model of Alzheimer’s disease. Eur J Immunol 2016;46:665-76.
               11.  Wu LY, Bao XQ, Pang HY, Sun H, Zhang D. FLZ attenuates learning and memory deficits via suppressing neuroinflammation induced
                   by LPS in mice. J Asian Nat Prod Res 2015;17:306-17.
               12.  Lee YJ, Han SB, Nam SY, Oh KW, Hong JT. Inflammation and Alzheimer’s disease. Arch Pharm Res 2010;33:1539-56.
               13.  Reinisch VM, Krause DL, Müller N. Neuroinflammation in Alzheimer’s disease. In: Peterson PK, Toborek M, editors.
                   Neuroinflammation and neurodegeneration. New York: Springer; 2014. p. 161-77.
               14.  Stewart WF, Kawas C, Corrada M, Metter EJ. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997;48:626-32.
               15.  Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ. Effects of rofecoxib or
                   naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 2003;289:2819-26.
               16.  Reines SA, Block GA, Morris JC, Liu G, Nessly ML, Lines CR, Norman BA, Baranak CC. Rofecoxib: no effect on Alzheimer’s disease
                   in a 1-year, randomized, blinded, controlled study. Neurology 2004;62:66-71.
               17.  Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N. A double-blind, placebo-controlled trial of diclofenac/misoprostol in
                   Alzheimer’s disease. Neurology 1999;53:197-201.
               18.  Brune K, Renner B, Tiegs G. Acetaminophen/paracetamol: a history of errors, failures and false decisions. Eur J Pain 2015;19:953-65.
               19.  Fiebich BL, Lieb K, Hüll M, Aicher B, van Ryn J, Pairet M, Engelhardt G. Effects of caffeine and paracetamol alone or in combination
                   with acetylsalicylic acid on prostaglandin E2 synthesis in rat microglial cells. Neuropharmacology 2000;39:2205-13.
               20.  Greco A, Ajmone-Cat MA, Nicolini A, Sciulli MG, Minghetti L. Paracetamol effectively reduces prostaglandin E2 synthesis in brain
                   macrophages by inhibiting enzymatic activity of cyclooxygenase but not phospholipase and prostaglandin E synthase. J Neurosci Res
                   2003;71:844-52.
               21.  Kis B, Snipes JA, Busija DW. Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties. J
                   Pharmacol Exp Ther 2005;315:1-7.
               22.  Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid
                   CB1 receptors. Eur J Pharmacol 2006;531:280-1.
               23.  Costa B, Siniscalco D, Trovato AE, Comelli F, Sotgiu ML, Colleoni M, Maione S, Rossi F, Giagnoni G. AM404, an inhibitor of
                   anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. Br J
                   Pharmacol 2006;148:1022-32.
               24.  Mallet C, Daulhac L, Bonnefont J, Ledent C, Etienne M, Chapuy E, Libert F, Eschalier A. Endocannabinoid and serotonergic systems
                   are needed for acetaminophen-induced analgesia. Pain 2008;139:190-200.
               25.  Jiang XL, Zhao P, Barrett JS, Lesko LJ, Schmidt S. Application of physiologically based pharmacokinetic modeling to predict
                   acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacometrics Syst Pharmacol 2013;2:e80.
               26.  Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen
                   metabolism at the therapeutic versus toxic doses. Pharmacogenet Genom 2015;25:416-26.
               27.  Högesätt ED, Bo AGJ, Ermund A, Andersson DA, Björk H, Alexander JP, Cravatt BF, Basbaum AI, Zygmunt PM. Conversion of
                   acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in
                   the nervous system. J Biol Chem 2005;280:31405-12.
               28.  Chen C, Krausz KW, Idle JR, Gonzalez FJ. Identification of novel toxicity-associated metabolites by metabolomics and mass
                   isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice. J Biol Chem 2008;283:4543-59.
               29.  Newton JF, Kuo CH, DeShone GM, Hoefle D, Bernstein J, Hook JB. The role of p-aminophenol in acetaminophen-induced
                   nephrotoxicity: effect of bis(p-nitrophenyl) phosphate on acetaminophen and p-aminophenol nephrotoxicity and metabolism in Fischer
                   344 rats. Tox Appl Pharmacol 1985;81:416-30.
   87   88   89   90   91   92   93   94   95   96   97