Page 121 - Read Online
P. 121

Page 255                Ratnapriya. J Transl Genet Genom 2022;6:240-256  https://dx.doi.org/10.20517/jtgg.2021.54

               70.       Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into
                    cell types. Science 2014;343:776-9.  DOI  PubMed  PMC
               71.       Regev A, Teichmann SA, Lander ES, et al; Human Cell Atlas Meeting Participants. The human cell atlas. Elife 2017;6:e27041.  DOI
                    PubMed  PMC
               72.       Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019;570:332-7.
                    DOI  PubMed  PMC
               73.       Agarwal D, Sandor C, Volpato V, et al. A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated
                    with neurological disorders. Nat Commun 2020;11:4183.  DOI  PubMed  PMC
               74.       Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat
                    Methods 2008;5:621-8.  DOI  PubMed
               75.       Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet 2019;20:631-56.  DOI  PubMed
               76.       Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell 2015;58:598-609.  DOI  PubMed
                    PMC
               77.       Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev
                    Genet 2018;19:491-504.  DOI  PubMed  PMC
               78.       Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to
                    enhance discovery from GWAS. PLoS Genet 2010;6:e1000888.  DOI  PubMed  PMC
               79.       Nica AC, Montgomery SB, Dimas AS, et al. Candidate causal regulatory effects by integration of expression QTLs with complex
                    trait genetic associations. PLoS Genet 2010;6:e1000895.  DOI  PubMed  PMC
               80.       Ratnapriya R, Sosina OA, Starostik MR, et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related
                    macular degeneration. Nat Genet 2019;51:606-10.  DOI  PubMed  PMC
               81.       Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet 2015;16:197-212.  DOI
                    PubMed
               82.       Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev
                    Genet 2009;10:184-94.  DOI  PubMed  PMC
               83.       Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet
                    2008;24:408-15.  DOI  PubMed  PMC
               84.       Hukku A, Pividori M, Luca F, Pique-Regi R, Im HK, Wen X. Probabilistic colocalization of genetic variants from complex and
                    molecular traits: promise and limitations. Am J Hum Genet 2021;108:25-35.  DOI  PubMed  PMC
               85.       Strunz T, Kiel C, Grassmann F, et al. A mega-analysis of expression quantitative trait loci in retinal tissue.  PLoS Genet
                    2020;16:e1008934.  DOI  PubMed  PMC
               86.       Orozco LD, Chen HH, Cox C, et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-
                    related macular degeneration. Cell Rep 2020;30:1246-59.e6.  DOI  PubMed
               87.       Liu B, Calton MA, Abell NS, et al. Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular
                    disease mechanisms. Commun Biol 2019;2:186.  DOI  PubMed  PMC
               88.       White MJ, Yaspan BL, Veatch OJ, Goddard P, Risse-Adams OS, Contreras MG. Strategies for pathway analysis using GWAS and
                    WGS data. Curr Protoc Hum Genet 2019;100:e79.  DOI  PubMed  PMC
               89.       Waksmunski AR, Grunin M, Kinzy TG, Igo RP Jr, Haines JL, Cooke Bailey JN; International Age-Related Macular Degeneration
                    Genomics Consortium. Pathway analysis integrating genome-wide and functional data identifies PLCG2 as a candidate gene for age-
                    related macular degeneration. Invest Ophthalmol Vis Sci 2019;60:4041-51.  DOI  PubMed  PMC
               90.       Sekar S, McDonald J, Cuyugan L, et al. Alzheimer’s disease is associated with altered expression of genes involved in immune
                    response and mitochondrial processes in astrocytes. Neurobiol Aging 2015;36:583-91.  DOI  PubMed  PMC
               91.       Fromer M, Roussos P, Sieberts SK, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat
                    Neurosci 2016;19:1442-53.  DOI  PubMed  PMC
               92.       Tian L, Kazmierkiewicz KL, Bowman AS, Li M, Curcio CA, Stambolian DE. Transcriptome of the human retina, retinal pigmented
                    epithelium and choroid. Genomics 2015;105:253-64.  DOI  PubMed  PMC
               93.       Newman AM, Gallo NB, Hancox LS, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and
                    phenotype-specific functional networks. Genome Med 2012;4:16.  DOI  PubMed  PMC
               94.       Pauly D, Agarwal D, Dana N, et al. Cell-type-specific complement expression in the healthy and diseased retina. Cell Rep
                    2019;29:2835-48.e4.  DOI  PubMed  PMC
               95.       Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol
                    2005;4:Article17.  DOI  PubMed
               96.       Calabrese GM, Mesner LD, Stains JP, et al. Integrating GWAS and co-expression network data identifies bone mineral density genes
                    SPTBN1 and MARK3 and an osteoblast functional module. Cell Syst 2017;4:46-59.e4.  DOI  PubMed  PMC
               97.       Gustafsson M, Gawel DR, Alfredsson L, et al. A validated gene regulatory network and GWAS identifies early regulators of T cell-
                    associated diseases. Sci Transl Med 2015;7:313ra178.  DOI  PubMed
               98.       Mäkinen VP, Civelek M, Meng Q, et al; Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis (CARDIoGRAM)
                    Consortium. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet
                    2014;10:e1004502.  DOI  PubMed  PMC
   116   117   118   119   120   121   122   123   124   125   126