Page 176 - Read Online
P. 176

Page 145               Hjalgrim et al. J Transl Genet Genom 2022;6:134-46  https://dx.doi.org/10.20517/jtgg.2021.46

               48.      Diepstra A, van Imhoff GW, Schaapveld M, et al. Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin’s lymphoma
                   predicts adverse outcome in older adult patients. J Clin Oncol 2009;27:3815-21.  DOI  PubMed
               49.      Küppers R, Rajewsky K, Zhao M, et al. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show
                   clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad
                   Sci U S A 1994;91:10962-6.  DOI  PubMed  PMC
               50.      Kanzler H, Küppers R, Hansmann ML, Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth
                   of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996;184:1495-505.  DOI  PubMed  PMC
               51.      Marafioti T, Hummel M, Foss HD, et al. Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a
                   germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood
                   2000;95:1443-50.  PubMed
               52.      Mancao C, Altmann M, Jungnickel B, Hammerschmidt W. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-
                   Barr virus. Blood 2005;106:4339-44.  DOI  PubMed  PMC
               53.      Jarrett RF, Hjalgrim H, Murray PG. The role of viruses in the genesis of Hodgkin lymphoma. In: Engert A, Younes A, editors.
                   Hodgkin lymphoma - a comprehensive review. Cham: Springer; 2018. p. 25-46.  DOI
               54.      Rosenwald A, Küppers R. Pathology and molecular pathology of Hodgkin lymphoma. In: Engert A, Younes A, editors. Hodgkin
                   lymphoma - a comprehensive overview, Cham: Springer; 2020. p. 47-68.  DOI
               55.      Murray PG, Young LS. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood
                   2019;134:591-6.  DOI  PubMed
               56.      Murray P, Ibrahim M. Role of EBV in classical Hodgkin lymphoma. In: Hudnall SD, Küppers R, editors. Precision molecular
                   pathology of Hodgkin lymphoma. Cham: Springer; 2018. p. 91-110.  DOI
               57.      Ambinder RF. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am J Pathol 2000;156:1-3.  DOI  PubMed  PMC
               58.      Visser L, Veldman J, Poppema S, van den Berg A, Diepstra A. Microenvironment, cross-talk, and immune escape mechanisms. In:
                   Engert A, Younes A, editors. Hodgkin lymphoma - a comprehensive overview. Cham: Springer; 2020. p. 69-86.  DOI
               59.      Chetaille B, Bertucci F, Finetti P, et al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor
                   microenvironment and correlations with EBV infection and outcome. Blood 2009;113:2765-3775.  DOI  PubMed
               60.      Ghosh SK, Perrine SP, Williams RM, Faller DV. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV
                   and sensitize lymphoma cells to nucleoside antiviral agents. Blood 2012;119:1008-17.  DOI  PubMed  PMC
               61.      Porcu P, Haverkos B, Alpdogan O, et al. Oral nanatinostat (Nstat) and valganciclovir (VGCV) in patients with recurrent Epstein-Barr
                   virus (EBV)-positive lymphomas: initial phase 2 results. Blood 2020;136:7-8.  DOI
               62.      Perrine SP, Hermine O, Small T, et al. A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-
                   associated lymphoid malignancies. Blood 2007;109:2571-8.  DOI  PubMed  PMC
               63.      Nijland M, Veenstra RN, Visser L, et al. HLA dependent immune escape mechanisms in B-cell lymphomas: implications for immune
                   checkpoint inhibitor therapy? Oncoimmunology 2017;6:e1295202.  DOI  PubMed  PMC
               64.      Bollard CM, Gottschalk S, Torrano V, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T
                   lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol 2014;32:798-808.  DOI  PubMed  PMC
               65.      Ho C, Ruella M, Levine BL, Svoboda J. Adoptive T-cell therapy for Hodgkin lymphoma. Blood Adv 2021;5:4291-302.  DOI  PubMed
               66.      Bollard CM, Tripic T, Cruz CR, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses
                   in patients with relapsed hodgkin lymphoma. J Clin Oncol 2018;36:1128-39.  DOI  PubMed  PMC
               67.      Heslop HE, Sharma S, Rooney CM. Adoptive T-cell therapy for Epstein-Barr virus-related lymphomas. J Clin Oncol 2021;39:514-24.
                   DOI  PubMed  PMC
               68.      Rouce RH, Mehta B, Sharma S, et al. Rapidly-generated EBV-specific T cells (EBVST-cells) to treat type 2 latency lymphoma. Blood
                   2016;128:2990.  DOI
               69.      Curran KJ, Sauter CS, Kernan NA, et al. Durable remission following “off-the-shelf” chimeric antigen receptor (CAR) T-cells in
                   patients with relapse/refractory (R/R) B-cell malignancies. Biol Blood Marrow Tr 2020;26:S89.  DOI
               70.      Dalton T, Doubrovina E, Pankov D, et al. Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-
                   directed immunotherapy. Blood 2020;135:1870-81.  DOI  PubMed  PMC
               71.      Choi IK, Wang Z, Ke Q, et al. Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature 2021;590:157-62.
                   DOI  PubMed  PMC
               72.      Mottok A, Steidl C. Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies. Blood 2018;131:1654-
                   65.  DOI  PubMed
               73.      Kamper P, Bendix K, Hamilton-Dutoit S, Honoré B, Nyengaard JR, d’Amore F. Tumor-infiltrating macrophages correlate with
                   adverse prognosis and Epstein-Barr virus status in classical Hodgkin’s lymphoma. Haematologica 2011;96:269-76.  DOI  PubMed
                   PMC
               74.      Guo B, Cen H, Tan X, Ke Q. Meta-analysis of the prognostic and clinical value of tumor-associated macrophages in adult classical
                   Hodgkin lymphoma. BMC Med 2016;14:159.  DOI  PubMed  PMC
               75.      Vari F, Arpon D, Keane C, et al. Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in
                   Hodgkin lymphoma than DLBCL. Blood 2018;131:1809-19.  DOI  PubMed  PMC
               76.      Advani RH, Moskowitz AJ, Bartlett NL, et al. Brentuximab vedotin in combination with nivolumab in relapsed or refractory Hodgkin
                   lymphoma: 3-year study results. Blood 2021;138:427-38.  DOI  PubMed
               77.      Reinke S, Bröckelmann PJ, Iaccarino I, et al. Tumor and microenvironment response but no cytotoxic T-cell activation in classic
                   Hodgkin lymphoma treated with anti-PD1. Blood 2020;136:2851-63.  DOI  PubMed
   171   172   173   174   175   176   177   178   179   180   181