Page 140 - Read Online
P. 140

Santiago et al. J Transl Genet Genom 2021;5:380-95  https://dx.doi.org/10.20517/jtgg.2021.16  Page 392

               7.       Vrooman LM, Blonquist TM, Harris MH, et al. Refining risk classification in childhood B acute lymphoblastic leukemia: results of
                    DFCI ALL Consortium Protocol 05-001. Blood Adv 2018;2:1449-58.  DOI  PubMed  PMC
               8.       Tasian SK, Hunger SP. Genomic characterization of paediatric acute lymphoblastic leukaemia: an opportunity for precision medicine
                    therapeutics. Br J Haematol 2017;176:867-82.  DOI  PubMed  PMC
               9.       Mullighan CG. How advanced are we in targeting novel subtypes of ALL? Best Pract Res Clin Haematol 2019;32:101095.  DOI
                    PubMed  PMC
               10.       Tran TH, Hunger SP. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities. Semin
                    Cancer Biol 2020:S1044-579X(20)30218.  DOI  PubMed
               11.       Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet
                    2019;51:296-307.  DOI  PubMed  PMC
               12.       Yeoh E, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic
                    leukemia by gene expression profiling. Cancer Cell 2002;1:133-43.  DOI  PubMed
               13.       Kang H, Chen IM, Wilson CS, et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk
                    classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 2010;115:1394-405.  DOI
                    PubMed  PMC
               14.       Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute
                    lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical
                    characteristics, and outcome. Blood 2010;116:4874-84.  DOI  PubMed  PMC
               15.       Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor
                    treatment outcome: a genome-wide classification study. Lancet Oncol 2009;10:125-34.  DOI  PubMed  PMC
               16.       Mullighan CG, Su X, Zhang J, et al; Children's Oncology Group. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia.
                    N Engl J Med 2009;360:470-80.  DOI  PubMed  PMC
               17.       Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of
                    IKZF1,  Hispanic/Latino  ethnicity,  and  a  poor  outcome  in  pediatric  B-progenitor  acute  lymphoblastic  leukemia.  Blood
                    2010;115:5312-21.  DOI  PubMed  PMC
               18.       Loh ML, Zhang J, Harvey RC, et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the
                    Children's Oncology Group TARGET Project. Blood 2013;121:485-8.  DOI  PubMed  PMC
               19.       Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med
                    2014;371:1005-15.  DOI  PubMed  PMC
               20.       Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2016;2016:561-6.  DOI
                    PubMed  PMC
               21.       Iacobucci I, Storlazzi CT, Cilloni D, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the
                    IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie
                    Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009;114:2159-67.  DOI  PubMed
               22.       Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: The good, the bad and the ugly. Blood Rev 2020;44:100677.
                    DOI  PubMed
               23.       Tran TH, Harris MH, Nguyen JV, et al. Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-
                    lineage acute lymphoblastic leukemia. Blood Adv 2018;2:529-33.  DOI  PubMed  PMC
               24.       Chen IM, Harvey RC, Mullighan CG, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric
                    acute lymphoblastic leukemia: a Children's Oncology Group study. Blood 2012;119:3512-22.  DOI  PubMed  PMC
               25.       Stanulla M, Dagdan E, Zaliova M, et al; TRANSCALL Consortium; International BFM Study Group. IKZF1  plus  defines a new
                    minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin
                    Oncol 2018;36:1240-9.  DOI  PubMed
               26.       Zhang J, McCastlain K, Yoshihara H, et al; St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome
                    Project. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 2016;48:1481-9.  DOI  PubMed  PMC
               27.       Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in
                    paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 2016;7:11790.  DOI  PubMed  PMC
               28.       Clappier E, Auclerc MF, Rapion J, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute
                    lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 2014;28:70-7.  DOI  PubMed
               29.       Zaliova M, Zimmermannova O, Dörge P, et al. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1
                    deletion in childhood acute lymphoblastic leukemia. Leukemia 2014;28:182-5.  DOI  PubMed
               30.       Zaliova M, Kotrova M, Bresolin S, et al. ETV6/RUNX1-like acute lymphoblastic leukemia: A novel B-cell precursor leukemia
                    subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer 2017;56:608-16.  DOI  PubMed
               31.       Li JF, Dai YT, Lilljebjörn H, et al. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an
                    international study of 1,223 cases. Proc Natl Acad Sci U S A 2018;115:E11711-20.  DOI  PubMed  PMC
               32.       Liu YF, Wang BY, Zhang WN, et al. Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine
                    2016;8:173-83.  DOI  PubMed  PMC
               33.       Gu Z, Churchman M, Roberts K, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat
                    Commun 2016;7:13331.  DOI  PubMed  PMC
               34.       Hirabayashi S, Ohki K, Nakabayashi K, et al; Tokyo Children’s Cancer Study Group (TCCSG). ZNF384-related fusion genes define
                    a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica
   135   136   137   138   139   140   141   142   143   144   145