Page 138 - Read Online
P. 138
Yasin et al. J Transl Genet Genom 2020;4:307-19 I https://doi.org/10.20517/jtgg.2020.30 Page 319
(CHD8) and functionally associated chromatin regulators in prostate cancer. Neoplasia 2014;16:1018-27.
63. Sawada G, Ueo H, Matsumura T, Uchi R, Ishibashi M, et al. CHD8 is an independent prognostic indicator that regulates Wnt/β-catenin
signaling and the cell cycle in gastric cancer. Oncol Rep 2013;30:1137-42.
64. Wade AA, Lim K, Catta-Preta R, Nord AS. Common CHD8 genomic targets contrast with model-specific transcriptional impacts of
CHD8 haploinsufficiency. Front Mol Neurosci 2019;11:481.
65. Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell
cycle and Wnt signaling. Nat Neurosci 2016;19:1477-88.
66. Gompers AL, Su-Feher L, Ellegood J, Copping NA, Riyadh MA, et al. Germline Chd8 haploinsufficiency alters brain development in
mouse. Nat Neurosci 2017;20:1062-73.
67. Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, et al. CHD8 haploinsufficiency results in autistic-like phenotypes in mice.
Nature 2016;537:675-9.
68. Platt RJ, Zhou Y, Slaymaker IM, Shetty AS, Weisbach NR, et al. Chd8 mutation leads to autistic-like behaviors and impaired striatal
circuits. Cell Rep 2017;19:335-50.
69. Suetterlin P, Hurley S, Mohan C, Riegman KLH, Pagani M, et al. Altered neocortical gene expression, brain overgrowth and functional
over-connectivity in Chd8 haploinsufficient mice. Cereb Cortex 2018;28:2192-206.
70. Jung H, Park H, Choi Y, Kang H, Lee E, et al. Sexually dimorphic behavior, neuronal activity, and gene expression in Chd8-mutant mice.
Nat Neurosci 2018;21:1218-28.
71. Wong WR, Brugman KI, Maher S, Oh JY, Howe K, et al. Autism-associated missense genetic variants impact locomotion and
neurodevelopment in Caenorhabditis elegans. Hum Mol Genet 2019;28:2271-81.
72. Gervais L, van den Beek M, Josserand M, Sallé J, Stefanutti M, et al. Stem cell proliferation is kept in check by the chromatin regulators
Kismet/CHD7/CHD8 and Trr/MLL3/4. Dev Cell 2019;49:556-73.e6.
73. Bernier R, Golzio C, Xiong B, Stessman HA, Coe BP, et al. Disruptive CHD8 mutations define a subtype of autism early in development.
Cell 2014;158:263-76.
74. Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, et al. CHD8 regulates neurodevelopmental pathways associated with autism
spectrum disorder in neural progenitors. Proc Natl Acad Sci 2014;111:E4468-77.
75. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene
CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2017;8:1-17.
76. Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene
CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 2015;8:1-18.
77. Wilkinson B, Grepo N, Thompson BL, Kim J, Wang K, et al. The autism-associated gene chromodomain helicase DNA-binding protein 8
(CHD8) regulates noncoding RNAs and autism-related genes. Transl Psychiatry 2015;5.
78. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation
in autism spectrum disorders. Cell 2015;162:375-90.
79. Kita Y, Katayama Y, Shiraishi T, Oka T, Sato T, et al. The autism-related protein CHD8 cooperates with C/EBPβ to regulate adipogenesis.
Cell Rep 2018;23:1988-2000.
80. Kawamura A, Katayama Y, Nishiyama M, Shoji H, Tokuoka K, et al. Oligodendrocyte dysfunction due to Chd8 mutation gives rise to
behavioral deficits in mice. Hum Mol Genet 2020;29:1274-91.
81. Weiss K, Terhal PA, Cohen L, Bruccoleri M, Irving M, et al. De Novo Mutations in CHD4, an ATP-dependent chromatin remodeler gene,
cause an intellectual disability syndrome with distinctive dysmorphisms. Am J Hum Genet 2016;99:934-41.
82. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, et al. CHD7 mutations and CHARGE syndrome: the clinical
implications of an expanding phenotype. J Med Genet 2011;48:334-42.