Page 124 - Read Online
P. 124

Dana et al. J Transl Genet Genom 2020;4:251-62  I  http://dx.doi.org/10.20517/jtgg.2020.25                                          Page 261

               52.  Amram N, Hacohen Kleiman G, Sragovich S, Malishkevich A, Katz J, et al. Sexual divergence in microtubule function: the novel
                   intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory. Mol Psychiatry 2016;21:1467-76.
               53.  Sragovich S, Merenlender Wagner A, Gozes I. ADNP plays a key role in autophagy: from autism to schizophrenia and Alzheimer’s
                   disease. Bioessays 2017;39.
               54.  Gozes I. ADNP regulates cognition: a multitasking protein. Front Neurosci 2018;12:873.
               55.  Malishkevich A, Amram N, Hacohen-Kleiman G, Magen I, Giladi E, et al. Activity dependent neuroprotective protein (ADNP) exhibits
                   striking sexual dichotomy impacting on autistic and Alzheimer’s pathologies. Transl Psychiatry 2015;5:e501.
               56.  Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, et al. Autism spectrum disorder: neuropathology and animal models.
                   Acta Neuropathol 2017;134:537-66.
               57.  De Rubeis S, Buxbaum JD. Recent advances in the genetics of autism spectrum disorder. Curr Neurol Neurosci Rep 2015;15:36.
               58.  Dudanova I, Tabuchi K, Rohlmann A, Südhof TC, Missler M. Deletion of alpha neurexins does not cause a major impairment of axonal
                   pathfinding or synapse formation. J Comp Neurol 2007;502:261-74.
               59.  Hammer M, Krueger-Burg D, Tuffy LP, Cooper BH, Taschenberger H, et al. Perturbed hippocampal synaptic inhibition and γ-Oscillations
                   in a Neuroligin-4 knockout mouse model of autism. Cell Rep 2015;13:516-23.
               60.  Chanda S, Aoto J, Lee SJ, Wernig M, Südhof TC. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered
                   AMPA-receptor trafficking. Mol Psychiatry 2016;21:169-77.
               61.  Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, et al. Autism-like deficits in Shank3-deficient mice are rescued by targeting actin
                   regulators. Cell Rep 2015;11:1400-13.
               62.  Goffin D, Allen M, Zhang L, Amorim M, Wang IT, et al. Rett syndrome mutation MeCP2T158A disrupts DNA binding, protein stability,
                   and ERP responses. Nat Neurosci 2012;15:274-83.
               63.  Grossman AW, Aldridge GM, Lee KJ, Zeman MK, Jun CS, et al. Developmental characteristics of dendritic spines in the dentate gyrus of
                   Fmr1 knockout mice. Brain Res 2010;1355:221-7.
               64.  Feliciano DM, QuonJL, Su T, Taylor MM, Bordey A. Postnatal neurogenesis generates heterotopias, olfactory micronodules, and cortical
                   infiltration following single cell Tsc1 deletion. Hum Mol Genet 2012;21:799-810.
               65.  Durak O, Gao F, Kaeser-Woo YJ, Rueda R, Martorell AJ, et al. Chd8 mediates cortical neurogenesis via transcriptional regulation of cell
                   cycle and Wnt signaling. Nat Neurosci 2016;19:1477-88.
               66.  Kearney JA, Plummer NW, Smith MR, Kapur J, Cummins TR, et al. A gain-of function mutation in the sodium channel gene Scn2a
                   results in seizures and behavioral abnormalities. Neuroscience 2001;102:307-17.
               67.  Aceti M, Creson TK, Vaissiere T, Rojas C, Huang WC, et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal
                   cell structural maturation linked to cortical circuit assembly. Biol Psychiatry 2015;77:805-15.
               68.  Ka M, Chopra DA, Dravid SM, Kim WY. Essential roles for ARID1B in dendritic arborization and spine morphology of developing
                   pyramidal neurons. J Neurosci 2016;36:2723-42.
               69.  Maynard KR, Stein E. DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J Neurosci
                   2012;32:16637-50.
               70.  Easton CR, Dickey CW, Moen SP, NeuzilKE, Barger Z, et al. Distinct calcium signals in developing cortical interneurons persist despite
                   disorganization of cortex by Tbr1 KO. Dev Neurobiol 2016;76:705-20.
               71.  Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy
                   machinery. Mol Biol Cell 2009;20:1992-2003.
               72.  Russell RC, Tian Y, Yuan H, Park HW, Chang YY, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34
                   lipid kinase. Nat Cell Biol 2013;15:741-50.
               73.  Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov
                   2012;11:709-30.
               74.  Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med 2013;19:983-97.
               75.  Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K. Neuronal stimulation induces autophagy in hippocampal neurons
                   that is involved in AMPA receptor degradation after chemical long-term depression. J Neurosci 2012;32:10413-22.
               76.  Yan J, Porch MW, Court-Vazquez B, Bennett MVL, Zukin RS. Activation of autophagy rescues synaptic and cognitive deficits in fragile
                   X mice. Proc Natl Acad Sci USA 2018;115:E9707-16.
               77.  Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, et al. Disruption of mTOR and MAPK pathways correlates with severity in
                   idiopathic autism. Transl Psychiatry 2019;9:50.
               78.  Curatolo P, Maria BL. Tuberous sclerosis. Handb Clin Neurol 2013;111:323-31.
               79.  Goorden SM, van Woerden GM, van der Weerd L, Cheadle JP, Elgersma Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral
                   lesions and seizures. Ann Neurol 2007;62:648-55.
               80.  Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat
                   Med 2008;14:843-8.
               81.  Chevere-Torres I, Maki JM, Santini E, Klann E. Impaired social interactions, and motor learning skills in tuberous sclerosis complex
                   model mice expressing a dominant/negative form of tuberin. Neurobiol Dis 2012;45:156-64.
               82.  Chen CJ, Sgritta M, Mays J, Zhou H, Lucero R, et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological
                   abnormalities associated with Pten-deficiency. Nat Med 2019;25:1684-90.
               83.  Lieberman OJ, Cartocci V, Pigulevskiy I, Molinari M, Carbonell J, et al. mTOR suppresses macroautophagyduring striatal postnatal
                   development and is hyperactive in mouse models of autism spectrum disorders. Front Cell Neurosci 2020;14:70.
   119   120   121   122   123   124   125   126   127   128   129