Page 27 - Read Online
P. 27
Giliberti et al. J Transl Genet Genom 2024;8:340-54 https://dx.doi.org/10.20517/jtgg.2024.41 Page 352
17. Zhu X, Yin L, Theisen M, et al. Systemic mRNA therapy for the treatment of Fabry disease: preclinical studies in wild-type mice,
Fabry mouse model, and wild-type non-human primates. Am J Hum Genet 2019;104:625-37. DOI PubMed PMC
18. Puri V, Watanabe R, Dominguez M, et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-
storage diseases. Nat Cell Biol 1999;1:386-8. DOI
19. Schueler U, Kaneski C, Remaley A, et al. A Short Synthetic Peptide Mimetic of Apolipoprotein A1 Mediates Cholesterol and
Globotriaosylceramide Efflux from Fabry Fibroblasts. In: Morava E, Baumgartner M, Patterson M, Rahman S, Zschocke J, Peters V,
editors. Berlin: Springer Berlin Heidelberg; 2016. pp. 69-75. DOI PubMed PMC
20. Biegstraaten M, Arngrímsson R, Barbey F, et al. Recommendations for initiation and cessation of enzyme replacement therapy in
patients with Fabry disease: the European Fabry Working Group consensus document. Orphanet J Rare Dis 2015;10:36. DOI
PubMed PMC
21. Christensen EI, Zhou Q, Sørensen SS, et al. Distribution of α-galactosidase A in normal human kidney and renal accumulation and
distribution of recombinant α-galactosidase A in Fabry mice. J Am Soc Nephrol 2007;18:698-706. DOI
22. Prabakaran T, Nielsen R, Larsen JV, et al. Receptor-mediated endocytosis of α-galactosidase A in human podocytes in Fabry disease.
PLoS One 2011;6:e25065. DOI PubMed PMC
23. Prabakaran T, Nielsen R, Satchell SC, et al. Mannose 6-phosphate receptor and sortilin mediated endocytosis of α-galactosidase A in
kidney endothelial cells. PLoS One 2012;7:e39975. DOI PubMed PMC
24. Frustaci A, Verardo R, Scialla R, et al. Downregulation of mannose-6-phosphate receptors in Fabry disease cardiomyopathy: a
potential target for enzyme therapy enhancement. J Clin Med 2022;11:5440. DOI PubMed PMC
25. Tøndel C, Bostad L, Larsen KK, et al. Agalsidase benefits renal histology in young patients with Fabry disease. J Am Soc Nephrol
2013;24:137-48. DOI PubMed PMC
26. Banikazemi M, Bultas J, Waldek S, et al. Agalsidase-beta therapy for advanced Fabry disease: a randomized trial. Ann Intern Med
2007;146:77-86. DOI
27. Weidemann F, Breunig F, Beer M, et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry
disease: a prospective strain rate imaging study. Circulation 2003;108:1299-301. DOI
28. van Breemen MJ, Rombach SM, Dekker N, et al. Reduction of elevated plasma globotriaosylsphingosine in patients with classic Fabry
disease following enzyme replacement therapy. Biochim Biophys Acta 2011;1812:70-6. DOI
29. Arends M, Wijburg FA, Wanner C, et al. Favourable effect of early versus late start of enzyme replacement therapy on plasma
globotriaosylsphingosine levels in men with classical Fabry disease. Mol Genet Metab 2017;121:157-61. DOI
30. Auray-Blais C, Lavoie P, Boutin M, et al. Biomarkers associated with clinical manifestations in Fabry disease patients with a late-
onset cardiac variant mutation. Clin Chim Acta 2017;466:185-93. DOI
31. Nowak A, Beuschlein F, Sivasubramaniam V, Kasper D, Warnock DG. Lyso-Gb3 associates with adverse long-term outcome in
patients with Fabry disease. J Med Genet 2022;59:287-93. DOI PubMed PMC
32. Messalli G, Imbriaco M, Avitabile G, et al. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing cardiac
effects of long-term enzyme replacement therapy. Radiol Med 2012;117:19-28. DOI
33. Tøndel C, Thurberg BL, DasMahapatra P, et al. Clinical relevance of globotriaosylceramide accumulation in Fabry disease and the
effect of agalsidase beta in affected tissues. Mol Genet Metab 2022;137:328-41. DOI
34. Germain DP, Waldek S, Banikazemi M, et al. Sustained, long-term renal stabilization after 54 months of agalsidase beta therapy in
patients with Fabry disease. J Am Soc Nephrol 2007;18:1547-57. DOI
35. Sirrs SM, Bichet DG, Casey R, et al. Outcomes of patients treated through the Canadian Fabry disease initiative. Mol Genet Metab
2014;111:499-506. DOI
36. Arends M, Biegstraaten M, Wanner C, et al. Agalsidase alfa versus agalsidase beta for the treatment of Fabry disease: an international
cohort study. J Med Genet 2018;55:351-8. DOI PubMed PMC
37. Mauhin W, Lidove O, Amelin D, et al. Deep characterization of the anti-drug antibodies developed in Fabry disease patients, a
prospective analysis from the French multicenter cohort FFABRY. Orphanet J Rare Dis 2018;13:127. DOI PubMed PMC
38. Beck M, Hughes D, Kampmann C, et al. Long-term effectiveness of agalsidase alfa enzyme replacement in Fabry disease: a Fabry
outcome survey analysis. Mol Genet Metab Rep 2015;3:21-7. DOI
39. Kampmann C, Perrin A, Beck M. Effectiveness of agalsidase alfa enzyme replacement in Fabry disease: cardiac outcomes after 10
years’ treatment. Orphanet J Rare Dis 2015;10:125. DOI PubMed PMC
40. Tsuboi K, Yamamoto H. Clinical observation of patients with Fabry disease after switching from agalsidase beta (Fabrazyme) to
agalsidase alfa (Replagal). Genet Med 2012;14:779-86. DOI
41. Hughes DA, Elliott PM, Shah J, et al. Effects of enzyme replacement therapy on the cardiomyopathy of Anderson-Fabry disease: a
randomised, double-blind, placebo-controlled clinical trial of agalsidase alfa. Heart 2008;94:153-8. DOI
42. Azevedo O, Gago MF, Miltenberger-Miltenyi G, Sousa N, Cunha D. Fabry disease therapy: state-of-the-art and current challenges. Int
J Mol Sci 2020;22:206. DOI PubMed PMC
43. Kizhner T, Azulay Y, Hainrichson M, et al. Characterization of a chemically modified plant cell culture expressed human α-
Galactosidase-A enzyme for treatment of Fabry disease. Mol Genet Metab 2015;114:259-67. DOI
44. Wallace EL, Goker-Alpan O, Wilcox WR, et al. Head-to-head trial of pegunigalsidase alfa versus agalsidase beta in patients with
Fabry disease and deteriorating renal function: results from the 2-year randomised phase III BALANCE study. J Med Genet
2024;61:520-30. DOI PubMed PMC