Page 109 - Read Online
P. 109
Rhoades et al. J Transl Genet Genom 2019;3:1. I https://doi.org/10.20517/jtgg.2018.26 Page 17 of 20
Med Genet B Neuropsychiatr Genet 2018;177:168-80.
17. Morris JA. The genomic load of deleterious mutations: relevance to death in infancy and childhood. Front Immunol 2015;6:105.
18. Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature
2014;506:185-90.
19. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev
2009;19:212-9.
20. Van Dongen J, Boomsma DI. The evolutionary paradox and the missing heritability of schizophrenia. Am J Med Genet B Neuropsychiatr
Genet 2013;162B:122-36.
21. Ripke S, Neale BM, Corvin A, Walters JT, Farh KH, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature
2014;511:421-7.
22. Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2012;13:135-45.
23. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005;6:95-108.
24. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet 2012;90:7-24.
25. Stranger BE, Stahl EA, Raj T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics
2011;187:367-83.
26. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. Genome-wide association defines more than 30 distinct susceptibility loci for
Crohn’s disease. Nat Genet 2008;40:955-62.
27. Betcheva ET, Yosifova AG, Mushiroda T, Kubo M, Takahashi A, et al. Whole-genome-wide association study in the Bulgarian population
reveals HHAT as schizophrenia susceptibility gene. Psychiatr Genet 2013;23:11-9.
28. Ren HY, Wang Q, Lei W, Zhang CC, Li YF, et al. The common variants implicated in microstructural abnormality of first episode and drug-
naïve patients with schizophrenia. Sci Rep 2017;7:11750.
29. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, et al. Genome-wide association study identifies five new schizophrenia loci. Nat
Genet 2011;43:969-76.
30. Mahmoudi E, Cairns MJ. MiR-137: an important player in neural development and neoplastic transformation. Mol Psychiatry
2017;22:44-55.
31. Liu C, Bousman CA, Pantelis C, Skafidas E, Zhang D, et al. Pathway-wide association study identifies five shared pathways associated with
schizophrenia in three ancestral distinct populations. Transl Psychiatry 2017;7:e1037.
32. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet
2018;19:491-504.
33. Mitchell KJ, Porteous DJ. Rethinking the genetic architecture of schizophrenia. Psychol Med 2011;41:19-32.
34. Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry
2015;20:555-62.
35. Klein C, Lohmann K, Ziegler A. The promise and limitations of genome-wide association studies. JAMA 2012;308:1867-8.
36. Altmüller J, Budde BS, Nürnberg P. Enrichment of target sequences for next-generation sequencing applications in research and diagnostics.
Biol Chem 2014;395:231-7.
37. Seleman M, Hoyos-Bachiloglu R, Geha RS, Chou J. Uses of next-generation sequencing technologies for the diagnosis of primary
immunodeficiencies. Front Immunol 2017;8:847.
38. Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev
Genet 2018;19:269-85.
39. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, et al. Exome sequencing and the genetic basis of complex traits. Nat Genet
2012;44:623-30.
40. Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet
2014;95:5-23.
41. Auer PL, Lettre G. Rare variant association studies: considerations, challenges and opportunities. Genome Med 2015;7:16.
42. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J
Hum Genet 2007;81:559-75.
43. Verma SS, Ritchie MD. Another round of “clue” to uncover the mystery of complex traits. Genes (Basel) 2018; doi: 10.3390/genes9020061.
44. Kao PY, Leung KH, Chan LW, Yip SP, Yap MK. Pathway analysis of complex diseases for GWAS, extending to consider rare variants,
multi-omics and interactions. Biochim Biophys Acta Gen Subj 2017;1861:335-53.
45. Kaakinen M, Mägi R, Fischer K, Heikkinen J, Järvelin MR, et al. MARV: a tool for genome-wide multi-phenotype analysis of rare variants.
BMC Bioinformatics 2017;18:110.
46. Morgenthaler S, Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic
sums test (CAST). Mutat Res 2007;615:28-56.
47. Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J
Hum Genet 2008;83:311-21.
48. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, et al. Testing for an unusual distribution of rare variants. PLoS Genet 2011; doi:
10.1371/journal.pgen.1001322.
49. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet 2011;89:82-93.
50. Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, et al. Optimal unified approach for rare-variant association testing with application