Page 97 - Read Online
P. 97

Page 274               Thomas et al. J Transl Genet Genom 2024;8:249-77  https://dx.doi.org/10.20517/jtgg.2024.15

               188.      González-González L, Alonso J. Periostin: a matricellular protein with multiple functions in cancer development and progression.
                    Front Oncol 2018;8:225.  DOI  PubMed  PMC
                                                              +
               189.      Wei T, Wang K, Liu S, et al. Periostin deficiency reduces PD-1  tumor-associated macrophage infiltration and enhances anti-PD-1
                    efficacy in colorectal cancer. Cell Rep 2023;42:112090.  DOI
               190.      Mortezaee K. Immune escape: a critical hallmark in solid tumors. Life Sci 2020;258:118110.  DOI  PubMed
               191.      Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug
                    Discov 2019;18:197-218.  DOI  PubMed
               192.      Hussein MR, Al-Assiri M, Musalam AO. Phenotypic characterization of the infiltrating immune cells in normal prostate, benign
                    nodular prostatic hyperplasia and prostatic adenocarcinoma. Exp Mol Pathol 2009;86:108-13.  DOI  PubMed
               193.      von Amsberg G, Alsdorf W, Karagiannis P, et al. Immunotherapy in advanced prostate cancer-light at the end of the tunnel? Int J Mol
                    Sci 2022;23:2569.  DOI  PubMed  PMC
               194.      Anker JF, Naseem AF, Mok H, Schaeffer AJ, Abdulkadir SA, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic
                    clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun 2018;9:1591.  DOI  PubMed  PMC
               195.      Vareki S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint
                    inhibitors. J Immunother Cancer 2018;6:157.  DOI  PubMed  PMC
               196.      Wang I, Song L, Wang BY, Rezazadeh Kalebasty A, Uchio E, Zi X. Prostate cancer immunotherapy: a review of recent
                    advancements with novel treatment methods and efficacy. Am J Clin Exp Urol 2022;10:210-33.  PubMed  PMC
               197.      Ma Z, Zhang W, Dong B, et al. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-
                    based immunotherapy. Theranostics 2022;12:4965-79.  DOI  PubMed  PMC
               198.      Chesner L, Graff J, Polesso F, et al. Abstract B041: AR suppresses MHC class I expression and T-cell response in prostate cancer.
                    Cancer Res 2023;83:B041.  DOI
               199.      Kogan-Sakin I, Cohen M, Paland N, et al. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to
                    epithelia-secreted IL-1. Carcinogenesis 2009;30:698-705.  DOI
               200.      Tse BW, Scott KF, Russell PJ. Paradoxical roles of tumour necrosis factor-alpha in prostate cancer biology. Prostate Cancer
                    2012;2012:128965.  DOI  PubMed  PMC
               201.      Smith BN, Mishra R, Billet S, et al. Antagonizing CD105 and androgen receptor to target stromal-epithelial interactions for clinical
                    benefit. Mol Ther 2023;31:78-89.  DOI  PubMed  PMC
               202.      Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023;9:212.  DOI
                    PubMed  PMC
               203.      Bullock K, Richmond A. Suppressing MDSC recruitment to the tumor microenvironment by antagonizing CXCR2 to enhance the
                    efficacy of immunotherapy. Cancers 2021;13:6293.  DOI  PubMed  PMC
               204.      Korbecki J, Kupnicka P, Chlubek M, Gorący J, Gutowska I, Baranowska-Bosiacka I. CXCR2 receptor: regulation of expression,
                    signal transduction, and involvement in cancer. Int J Mol Sci 2022;23:2168.  DOI  PubMed  PMC
               205.      Di Mitri D, Mirenda M, Vasilevska J, et al. Re-education of tumor-associated macrophages by CXCR2 blockade drives senescence
                    and tumor inhibition in advanced prostate cancer. Cell Rep 2019;28:2156-2168.e5.  DOI  PubMed  PMC
               206.      Bahig H, Taussky D, Delouya G, et al. Neutrophil count is associated with survival in localized prostate cancer. BMC Cancer
                    2015;15:594.  DOI  PubMed  PMC
               207.      Sharma J, Gray KP, Harshman LC, et al. Elevated IL-8, TNF-α, and MCP-1 in men with metastatic prostate cancer starting androgen-
                    deprivation therapy (ADT) are associated with shorter time to castration-resistance and overall survival. Prostate 2014;74:820-8.
                    DOI
               208.      Minas TZ, Candia J, Dorsey TH, et al. Serum proteomics links suppression of tumor immunity to ancestry and lethal prostate cancer.
                    Nat Commun 2022;13:1759.  DOI  PubMed  PMC
               209.      Wallace TA, Prueitt RL, Yi M, et al. Tumor immunobiological differences in prostate cancer between African-American and
                    European-American men. Cancer Res 2008;68:927-36.  DOI
               210.      Zhu W, Wu J, Huang J, et al. Multi-omics analysis reveals a macrophage-related marker gene signature for prognostic prediction,
                    immune landscape, genomic heterogeneity, and drug choices in prostate cancer. Front Immunol 2023;14:1122670.  DOI  PubMed
                    PMC
               211.      Chen C, Luo J, Wang X. Identification of prostate cancer subtypes based on immune signature scores in bulk and single-cell
                    transcriptomes. Med Oncol 2022;39:123.  DOI  PubMed
               212.      Guo T, Wang J, Yan S, et al. A combined signature of glycolysis and immune landscape predicts prognosis and therapeutic response
                    in prostate cancer. Front Endocrinol 2022;13:1037099.  DOI  PubMed  PMC
               213.      Ren C, Wang Q, Wang S, et al. Metabolic syndrome-related prognostic index: predicting biochemical recurrence and differentiating
                    between cold and hot tumors in prostate cancer. Front Endocrinol 2023;14:1148117.  DOI  PubMed  PMC
               214.      Li N, Yu K, Lin Z, Zeng D. Development of a novel immune subtyping system expanded with immune landscape and an 11-gene
                    signature for predicting prostate cancer survival. J Oncol 2022;2022:1183173.  DOI  PubMed  PMC
               215.      Keam SP, Halse H, Nguyen T, et al. High dose-rate brachytherapy of localized prostate cancer converts tumors from cold to hot. J
                    Immunother Cancer 2020;8:e000792.  DOI  PubMed  PMC
               216.      Shen Y, Xu H, Long M, et al. Screening to identify an immune landscape-based prognostic predictor and therapeutic target for
                    prostate cancer. Front Oncol 2021;11:761643.  DOI  PubMed  PMC
   92   93   94   95   96   97   98   99   100   101   102