Page 114 - Read Online
P. 114

Page 75                 Oboma et al. J Transl Genet Genom. 2025;9:62-75  https://dx.doi.org/10.20517/jtgg.2024.74

               47.      Kim TJ, Koo KC. Current status and future perspectives of checkpoint inhibitor immunotherapy for prostate cancer: a comprehensive
                   review. Int J Mol Sci. 2020;21:5484.  DOI  PubMed  PMC
               48.      Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies. J
                   Allergy Clin Immunol. 2020;146:940-8.  DOI  PubMed
               49.      Abou-el-Enein M, Elsallab M, Feldman SA, et al. Scalable manufacturing of CAR T cells for cancer immunotherapy. Blood Cancer
                   Dis. 2021;2:408-22.  DOI  PubMed  PMC
               50.      Townsend BA. Human genome editing: how to prevent rogue actors. BMC Med Ethics. 2020;21:95.  DOI  PubMed  PMC
               51.      Pipe SW, Reddy KR, Chowdary P. Gene therapy: practical aspects of implementation. Haemophilia. 2022;28 Suppl 4:44-52.  DOI
                   PubMed  PMC
               52.      Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021;23:78.  DOI  PubMed
                   PMC
               53.      Weimin S, Abula A, Qianghong D, Wenguang W. Chimeric cytokine receptor enhancing PSMA-CAR-T cell-mediated prostate cancer
                   regression. Cancer Biol Ther. 2020;21:570-80.  DOI  PubMed  PMC
               54.      Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108:479-85.  DOI
                   PubMed  PMC
               55.      Narayan V, Barber-Rotenberg JS, Jung IY, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-
                   resistant prostate cancer: a phase 1 trial. Nat Med. 2022;28:724-34.  DOI
               56.      Quinn C, Young C, Thomas J, Trusheim M; MIT NEWDIGS FoCUS Writing Group. Estimating the clinical pipeline of cell and gene
                   therapies and their potential economic impact on the US healthcare system. Value Health. 2019;22:621-6.  DOI  PubMed
               57.      Rubanyi GM. The future of human gene therapy. Mol Asp Med. 2001;22:113-42.  DOI
               58.      Porter LH, Harrison SG, Risbridger GP, Lister N, Taylor RA. Left out in the cold: Moving beyond hormonal therapy for the treatment
                   of immunologically cold prostate cancer with CAR T cell immunotherapies. J Steroid Biochem Mol Biol. 2024;243:106571.  DOI
               59.      Ohomoimen G, Oboma YI, Beredugo S, Beredugo L. MutS homolog 2 and MutS homolog 3 genes are equivocal in prostate disease
                   diagnosis: a study from Niger Delta University Teaching Hospital (NDUTH) in Okolobiri, Bayelsa State, Nigeria. Acad J Health Sci.
                   2024;39:23.  DOI
               60.      Patra D. Polymer-based nanoparticles as efficient non-viral vectors for gene delivery in CAR-T cell therapy. Exon. 2024;1:87-96.  DOI
               61.      Patnaik S, Anupriya. Drugs targeting epigenetic modifications and plausible therapeutic strategies against colorectal cancer. Front
                   Pharmacol. 2019;10:588.  DOI  PubMed  PMC
               62.      Shalhout SZ, Miller DM, Emerick KS, Kaufman HL. Therapy with oncolytic viruses: progress and challenges. Nat Rev Clin Oncol.
                   2023;20:160-77.  DOI  PubMed
               63.      Liu Y, An L, Huang R, et al. Strategies to enhance CAR-T persistence. Biomark Res. 2022;10:86.  DOI  PubMed  PMC
   109   110   111   112   113   114   115   116   117   118   119