Page 89 - Read Online
P. 89

Lorenzin et al. J Transl Genet Genom 2019;3:5. I  https://doi.org/10.20517/jtgg.2019.01                                            Page 11 of 12

               81.  Beltran H, Tagawa ST, Park K, MacDonald T, Milowsky MI, et al. Challenges in recognizing treatment-related neuroendocrine prostate
                   cancer. J Clin Oncol 2012;30:e386-9.
               82.  Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D, et al. Aggressive variants of castration-resistant prostate cancer. Clin Cancer Res
                   2014;20:2846-50.
               83.  Wang HT, Yao YH, Li BG, Tang Y, Chang JW, et al. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic
                   adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled
                   analysis. J Clin Oncol 2014;32:3383-90.
               84.  Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, et al. Clinical and genomic characterization of treatment-emergent small-cell
                   neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol 2018;36:2492-503.
               85.  Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, et al. Androgen receptor pathway-independent prostate cancer is
                   sustained through FGF signaling. Cancer Cell 2017;32:474-89.e6.
               86.  Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model
                   of castration-resistant prostate cancer. Cancer Discov 2017;7:736-49.
               87.  Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate
                   cancer. Nat Med 2016;22:298-305.
               88.  Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and
                   antiandrogen resistance. Science 2017;355:78-83.
               89.  Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and
                   RB1-deficient prostate cancer. Science 2017;355:84-8.
               90.  Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, et al. The master neural transcription factor BRN2 is an androgen receptor-suppressed
                   driver of neuroendocrine differentiation in prostate cancer. Cancer Discov 2017;7:54-71.
               91.  Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, et al. Reprogramming normal human epithelial tissues to a common, lethal
                   neuroendocrine cancer lineage. Science 2018;362:91-5.
               92.  Beltran H, Rickman DS, Park K, Chae SS, Sboner A, et al. Molecular characterization of neuroendocrine prostate cancer and identification
                   of new drug targets. Cancer Discovery 2011;1:487-95.
               93.  Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, et al. N-Myc induces an EZH2-mediated transcriptional program driving
                   neuroendocrine prostate cancer. Cancer Cell 2016;30:563-77.
               94.  Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol
                   2008;32:65-71.
               95.  Johnson MH, Ross AE, Alshalalfa M, Erho N, Yousefi K, et al. SPINK1 defines a molecular subtype of prostate cancer in men with more
                   rapid progression in an at risk, natural history radical prostatectomy cohort. J Urol 2016;196:1436-44.
               96.  Leinonen KA, Tolonen TT, Bracken H, Stenman UH, Tammela TL, et al. Association of SPINK1 expression and TMPRSS2:ERG fusion
                   with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 2010;16:2845-51.
               97.  Pan X, Zhang X, Gong J, Tan J, Yin X, et al. The expression profile and prognostic value of SPINK1 in initially diagnosed bone metastatic
                   prostate cancer. Prostate 2016;76:823-33.
               98.  Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer
                   Cell 2008;13:519-28.
               99.  Shukla S, Cyrta J, Murphy DA, Walczak EG, Ran L, et al. Aberrant activation of a gastrointestinal transcriptional circuit in prostate cancer
                   mediates castration resistance. Cancer Cell 2017;32:792-806.e7.
               100.  Chesire DR, Ewing CM, Sauvageot J, Bova GS, Isaacs WB. Detection and analysis of beta-catenin mutations in prostate cancer. Prostate
                   2000;45:323-34.
               101.  Voeller HJ, Truica CI, Gelmann EP. Beta-catenin mutations in human prostate cancer. Cancer Res 1998;58:2520-3.
               102.  Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced
                   metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer 2004;101:1345-56.
               103.  Chesire DR, Ewing CM, Gage WR, Isaacs WB. In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate
                   growth and tumorigenesis. Oncogene 2002;21:2679-94.
               104.  Truica CI, Byers S, Gelmann EP. Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res
                   2000;60:4709-13.
               105.  Yang F, Li X, Sharma M, Sasaki CY, Longo DL, et al. Linking beta-catenin to androgen-signaling pathway. J Biol Chem 2002;277:11336-
                   44.
               106.  Nava Rodrigues D, Casiraghi N, Romanel A, Crespo M, Miranda S, et al. RB1 heterogeneity in advanced metastatic castration-resistant
                   prostate cancer. Clin Cancer Res 2019;25:687-97.
               107.  Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA
                   PCAT19. Cell 2018;174:564-75.e18.
               108.  Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA, et al. Role of non-coding sequence variants in cancer. Nat Rev Genet
                   2016;17:93-108.
               109.  Gao P, Xia JH, Sipeky C, Dong XM, Zhang Q, et al. Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility
                   locus. Cell 2018;174:576-89.e18.
               110.  Romanel A, Garritano S, Stringa B, Blattner M, Dalfovo D, et al. Inherited determinants of early recurrent somatic mutations in prostate
   84   85   86   87   88   89   90   91   92   93   94