Page 54 - Read Online
P. 54
Dasgupta et al. J Transl Genet Genom 2018;2:15. I https://doi.org/10.20517/jtgg.2018.21 Page 15 of 15
medulloblastoma subgroups. J Neurosurg Pediatr 2018;21:145-52.
31. Dasgupta A, Gupta T, Pungavkar S, Shirsat N, Epari S, et al. Nomograms based on pre-operative multi-parametric magnetic resonance
imaging for prediction of molecular subgrouping in medulloblastoma: results from a radiogenomics study of 111 patients. Neuro Oncol
2018; doi: 10.1093/neuonc/noy093.
32. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature
2010;468:1095-9.
33. Gilbertson RJ, Ellison DW. The origins of medulloblastoma subtypes. Annu Rev Pathol 2008;3:341-65.
34. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer
Cell 2016;29:508-22.
35. Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB, et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic
factors for medulloblastoma in children: conclusions from the Children’s Cancer Group 921 randomized phase III study. J Clin Oncol
1999;17:832-45.
36. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, et al. Risk stratification of childhood medulloblastoma in the molecular era: the
current consensus. Acta Neuropathol 2016;131:821-31.
37. Mulhern RK, Merchant TE, Gajjar A, Reddick WE, Kun LE. Late neurocognitive sequelae in survivors of brain tumours in childhood.
Lancet Oncol 2004;5:399-408.
38. Fossati P, Ricardi U, Orecchia R. Pediatric medulloblastoma: toxicity of current treatment and potential role of protontherapy. Cancer Treat
Rev 2009;35:79-96.
39. Moxon-Emre I, Taylor MD, Bouffet E, Hardy K, Campen CJ, et al. Intellectual outcome in molecular subgroups of medulloblastoma. J Clin
Oncol 2016;34:4161-70.
40. Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B, et al. Prognostic value of medulloblastoma extent of resection after accounting
for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 2016;17:484-95.
41. Colafati GS, Voicu IP, Carducci C, Miele E, Carai A, et al. MRI features as a helpful tool to predict the molecular subgroups of
medulloblastoma: state of the art. Ther Adv Neurol Disord 2018;11:1756286418775375.
42. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer
Cell 2017;31:737-54.
43. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ, et al. Novel molecular subgroups for clinical classification and outcome
prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 2017;18:958-71.
44. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJ. Machine learning methods for quantitative radiomic biomarkers. Sci Rep
2015;5:13087.
45. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, et al. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and
machine-learning approaches. AJNR Am J Neuroradiol 2018;39:208-16.