Page 126 - Read Online
P. 126

Page 6 of 19                          Chen et al. J Mater Inf 2023;3:10  https://dx.doi.org/10.20517/jmi.2023.06

               Table 3. EHEA compositions identified via Equation (2)
                C             C      Parent binary eutectics  Pseudo-binary system  C   (experimental)  Ref.
                 I             II                                                eutectic
                CoCrNi        Ta     (Co, Cr, Ni)-Ta       (CoCrNi) Ta          CoCrNiTa             [67]
                                                                 1-x  x                0.4
                              Nb     (Co, Cr, Ni)-Nb       (CoCrNi) Nb          CoCrNiNb             [100]
                                                                 1-x  x                0.4
                CoFeNi        NiAl   (Co, Ni)-Al           (CoFeNi) (NiAl)      CoFeNi(NiAl)         [101]
                                                                 1-x  x                  0.92
                CoCrFeNi      Ta     (Co, Cr, Fe, Ni)-Ta   (CoCrFeNi) Ta        CoCrFeNiTa           [66]
                                                                   1-x  x               0.75
                                                                                CoCrFeNiTa           [95]
                                                                                        0.43
                              Nb     (Co, Cr, Fe, Ni)-Nb   (CoCrFeNi) Nb        CoCrFeNiNb           [64]
                                                                   1-x  x               0.65
                              Zr     (Co, Cr, Fe, Ni)-Zr   (CoCrFeNi) Zr        CoCrFeNiZr           [102]
                                                                   1-x  x               0.5
                              Hf     (Co, Cr, Fe, Ni)-Hf   (CoCrFeNi) Hf        CoCrFeNiHf           [103]
                                                                   1-x  x               0.4
                              Mo     (Co, Ni)-Mo           (CoCrFeNi) Mo        CoCrFeNiMo           [99]
                                                                   1-x  x                0.8
                CoCrNi        (V, B, Si)  (Co, Ni)-V       (CoCrNi ) (V, B, Si)  CoCrNi (V B)        [97]
                    2                                            2 1-x  x            2  2  0.43
                                     (Co, Cr, Ni)-B                             CoCrNi (V B Si)      [97]
                                     (Co, Cr, Ni)-Si                                 2  3 2  0.2
                CoCrFeNi      (V, B, Si)  (Co, Ni)-V       (CoCrFeNi ) (V, B, Si)  CoCrFeNi (V B)    [97]
                      2                                           2 1-x   x            2  2  0.51
                                     (Co, Cr, Fe, Ni)-B                         CoCrNi (V B Si)      [97]
                                     (Co, Cr, Fe, Ni)-Si                             2  6 3  0.149
                              Ni Al  (Co, Fe, Ni)-Al       (CoCrFeNi ) (Ni, Al)  CoCrFeNi (Ni Al )   [65]
                               0.8  1.2                           2 1-x  x             2  0.8  1.2
                Co CrFeNi     Ni Al  (Co, Fe, Ni)-Al       (Co CrFeNi) (Ni, Al)  Co CrFeNi(Ni Al )   [65]
                 2             0.8  1.2                       2    1-x   x        2      0.8  1.2
                CoCrFe Ni     Ni Al  (Co, Fe, Ni)-Al       (CoCrFe Ni) (Ni, Al)  CoCrFe Ni(Ni Al )   [65]
                    2          0.8  1.2                          2  1-x  x           2   0.8  1.2
                Ni AlTi       V      Ni-V                  (Ni AlTi) V          (Ni AlTi) V          [104]
                 2                                           2   1-x  x           2   68  32
                CrNbTiZr      Al     (Nb, Zr)-Al           (CrNbTiZr) Al        (CrNbTiZr)  Al       [105]
                                                                  1-x  x                0.25  0.75
                HfMo NbTiV    Si     (Hf, Mo, Nb, Ti, V)-Si  (HfMo NbTiV ) Si   -                    [106]
                   0.5   0.5                                    0.5  0.5 1-x  x
                HfCo          NbMo   Co-(Nb, Mo)           (HfCo) (NbMo)        (HfCo)  (NbMo)       [107]
                                                                1-x   x              0.75   0.25
                GaInSn        Zn     (Ga, In, Sn)-Zn       (GaInSn) Zn          -                    [108]
                                                                 1-x  x
               Table 4. EHEA compositions identified via machine learning
                Alloy            Database              Features                Label          Algorithm Ref.
                Al Co Cr Fe Ni   10 (Experiment) +     Compositions            Primary phase   ANN    [79]
                 18  30  10  10  32
                                 311(CALPHAD)                                  fraction
                Al Co Cr Ni      4 (Experiment) + 96(CALPHAD) Compositions     Primary phase   SVM    [80]
                 19  16  16  49
                                                                               fraction
                Hf  Co  Cr  Fe  Ni  20 (Experiment)    Content of Co, Cr, Fe, Ni  Content of Hf  ELM  [81]
                 0.34  1.33  0.74  0.20
                0.75
                Hf  Co  Cr  Fe  Ni
                 0.30  0.80  1.40  0.82
                0.16
                Hf  Co  Cr  Fe  Ni
                 0.37  0.42  0.81  1.29  0.82
                Hf  Co  Cr  Fe  Ni
                 0.36  0.16  0.76  0.81  1.38
                AlCrFe2.5Ni2.5    66 (Experiment)      Compositions, phase volume   Melting range  GRNN  [113]
                (Near-eutectic)                        fractions
               ANN: Artificial neural network; ELM: extreme learning machine; GRNN: generalized regression neural network; SVM: support vector machine.
               respect to equilibrium phases, which might differ from the actual EHEA compositions that are metastable
               because of the fast cooling. In addition, one needs to be cautious while resorting to Scheil simulations for
                                                                              [63,110,114,115]
               metastable phases, which are usually considered to represent as-cast phases   because it is performed
                                                                                            [111]
               by only considering atom diffusion in liquids (i.e. completely ignoring solid-state diffusion) .
               To improve the data fidelity and also the performance of ML modeling, the data may need to be screened or
               pre-processed. Generally, data pre-processing includes (1) deletion of repetitive and incompatible data; (2)
               data normalization; and (3) data undersampling or oversampling [116-118] . However, randomly oversampling
               may result in model overfitting while randomly undersampling may cause loss of useful data, both of which
   121   122   123   124   125   126   127   128   129   130   131