Page 539 - Read Online
P. 539

Page 10 of 10                       Schulze et al. J Cancer Metastasis Treat 2020;6:42  I  http://dx.doi.org/10.20517/2394-4722.2020.79

                   vehicle. Onco Targets Ther 2018;11:5753-62.
               69.  Lin Q, Qu M, Zhou B, et al. Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation
                   effects of imperialine. J Control Release 2019;311-312:104-16.
               70.  Nie W, Wu G, Zhang J, et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed Engl
                   2020;59:2018-22.
               71.  Pullan JE, Confeld MI, Osborn JK, Kim J, Sarkar K, Mallik S. Exosomes as drug carriers for cancer therapy. Mol Pharm 2019;16:1789-98.
               72.  Wang J, Zheng Y, Zhao M. Exosome-based cancer therapy: implication for targeting cancer stem cells. Front Pharmacol 2016;7:533.
               73.  Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013;39:1-10.
               74.  Pitt JM, André F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest 2016;126:1224-32.
               75.  Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles-a novel strategy
                   for enhancement of the anti-tumor immune response. Front Pharmacol 2019;10:1152.
               76.  Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived
                   exosomes. Nat Med 1998;4:594-600.
               77.  Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate
                   natural killer cells via TNF superfamily ligands. Oncoimmunology 2012;1:1074-83.
               78.  Bobrie A, Krumeich S, Reyal F, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor
                   microenvironment and can promote tumor progression. Cancer Res 2012;72:4920-30.
               79.  Li J, Chen J, Wang S, et al. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis. J Cell Physiol
                   2019:15763-74.
               80.  Marleau AM, Chen CS, Joyce JA, Tullis RH. Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 2012;10:134.
               81.  Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014;3:24641.
               82.  Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate
                   proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A 2013;110:17380-5.
               83.  Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett
                   2013;335:201-4.
               84.  Zhang K, Dong C, Chen M, et al. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma.
                   Theranostics 2020;10:411-25.
               85.  Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma.
                   Hepatology 2018;67:940-54.
               86.  O’Brien KP, Khan S, Gilligan KE, et al. Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle
                   (EV)-encapsulated microRNA-379. Oncogene 2018;37:2137-49.
               87.  Ding Y, Cao F, Sun H, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to
                   inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett 2019;442:351-61.
               88.  Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular
                   permeability and angiogenesis. Nat Commun 2018;9:5395.
               89.  Rountree RB, Mandl SJ, Nachtwey JM, et al. Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen
                   immunogenicity and therapeutic efficacy. Cancer Res 2011;71:5235-44.
               90.  André F, Chaput N, Schartz NE, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer
                   functional MHC class I/peptide complexes to dendritic cells. J Immunol 2004;172:2126-36.
               91.  Chaput N, Schartz NE, André F, et al. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently
                   prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol 2004;172:2137-46.
               92.  Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis.
                   Immunity 1995;3:673-82.
               93.  Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the
                   tumor necrosis factor cytokine family. J Biol Chem 1996;271:12687-90.
               94.  Rivoltini L, Chiodoni C, Squarcina P, et al. TNF-related apoptosis-inducing ligand (TRAIL)-armed exosomes deliver proapoptotic signals
                   to tumor site. Clin Cancer Res 2016;22:3499-512.
               95.  Dai S, Zhou X, Wang B, et al. Enhanced induction of dendritic cell maturation and HLA-A*0201-restricted CEA-specific CD8(+) CTL
                   response by exosomes derived from IL-18 gene-modified CEA-positive tumor cells. J Mol Med (Berl) 2006;84:1067-76.
               96.  Yang Y, Xiu F, Cai Z, et al. Increased induction of antitumor response by exosomes derived from interleukin-2 gene-modified tumor cells.
                   J Cancer Res Clin Oncol 2007;133:389-99.
               97.  Koh E, Lee EJ, Nam GH, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 2017;121:121-9.
               98.  Tang K, Zhang Y, Zhang H, et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat Commun 2012;3:1282.
               99.  Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine
                   2016;12:655-64.
               100. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug
                   delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015;220:727-37.
               101. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor
                   therapy. Biomaterials 2014;35:2383-90.
   534   535   536   537   538   539   540   541   542   543   544